AIBcat | R Documentation |
The AIBcat
function implements the Agglomerative Information Bottleneck (AIB) algorithm
for hierarchical clustering of datasets containing categorical variables. This method merges clusters
so that information retention is maximised at each step to create meaningful clusters,
leveraging bandwidth parameters to handle
different categorical data types (nominal and ordinal) effectively \insertCiteslonim_aib_1999IBclust.
AIBcat(X, lambda = -1)
X |
A data frame containing the categorical data to be clustered. All variables should be categorical,
either |
lambda |
A numeric value or vector specifying the bandwidth parameter for categorical variables. The default value is |
The AIBcat
function applies the Agglomerative Information Bottleneck algorithm to do hierarchical clustering of datasets containing only categorical variables, both nominal and ordinal. The algorithm uses an information-theoretic criterion to merge clusters so that information retention is maximised at each step to create meaningful clusters with maximal information about the original distribution.
To estimate the distributions of categorical features, the function utilizes specialized kernel functions, as follows:
K_u(x = x'; \lambda) = \begin{cases}
1 - \lambda, & \text{if } x = x' \\
\frac{\lambda}{\ell - 1}, & \text{otherwise}
\end{cases}, \quad 0 \leq \lambda \leq \frac{\ell - 1}{\ell},
where \ell
is the number of categories, and \lambda
controls the smoothness of the Aitchison & Aitken kernel for nominal variables \insertCiteaitchison_kernel_1976IBclust.
K_o(x = x'; \nu) = \begin{cases}
1, & \text{if } x = x' \\
\nu^{|x - x'|}, & \text{otherwise}
\end{cases}, \quad 0 \leq \nu \leq 1,
where \nu
is the bandwidth parameter for ordinal variables, accounting for the ordinal relationship between categories \insertCiteli_nonparametric_2003IBclust.
Here, \lambda
, and \nu
are bandwidth or smoothing parameters, while \ell
is the number of levels of the categorical variable. The lambda parameter is automatically determined by the algorithm if not provided by the user. For ordinal variables, the lambda parameter of the function is used to define \nu
.
A list containing the following elements:
merges |
A data frame with 2 columns and |
merge_costs |
A numeric vector tracking the cost incurred by each merge |
partitions |
A list containing |
I_Z_Y |
A numeric vector including the mutual information |
I_X_Y |
A numeric value of the mutual information |
info_ret |
A numeric vector of length |
dendrogram |
A dendrogram visualising the cluster hierarchy. The height is determined by the cost of cluster merges. |
Efthymios Costa, Ioanna Papatsouma, Angelos Markos
slonim_aib_1999IBclust
\insertRefaitchison_kernel_1976IBclust
\insertRefli_nonparametric_2003IBclust
AIBmix
, AIBcont
# Simulated categorical data
set.seed(123)
X <- data.frame(
Var1 = as.factor(sample(letters[1:3], 200, replace = TRUE)), # Nominal variable
Var2 = as.factor(sample(letters[4:6], 200, replace = TRUE)), # Nominal variable
Var3 = factor(sample(c("low", "medium", "high"), 200, replace = TRUE),
levels = c("low", "medium", "high"), ordered = TRUE) # Ordinal variable
)
# Run AIBcat with automatic lambda selection
result <- AIBcat(X = X, lambda = -1)
# Print clustering results
plot(result$dendrogram, xlab = "", sub = "") # Plot dendrogram
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.