Nothing
AIBcat <- function(X, lambda = -1) {
# Validate inputs
if (!is.data.frame(X)) {
stop("Input 'X' must be a data frame.")
}
# Validate lambda
if (!is.numeric(lambda) ||
!(length(lambda) == 1 || length(lambda) == ncol(X)) ||
any(lambda <= 0 & lambda != -1)) {
stop("'lambda' must be either a single numeric value (-1 for automatic selection or a positive value) or a numeric vector with positive values matching the number of 'catcols'.")
}
# Additional check for maximum lambda value for nominal variables
if (length(lambda) > 1 && length(lambda) == ncol(X)) {
max_lambda <- sapply(1:ncol(X), function(col) {
l <- length(unique(X[, col]))
(l - 1) / l
})
if (any(lambda > max_lambda)) {
stop("'lambda' values for nominal variables must not exceed their maximum allowable value of (l - 1)/l, where l is the number of categories in the variable.")
}
}
# Preprocessing
X <- preprocess_cat_data(X)
if (length(lambda) == 1){
if (lambda == -1){
# Compute lambda for categorical data
lambda <- compute_lambda_cat(X)
}
}
bws_vec <- lambda
# Compute joint probability density for categorical variables
pxy_list <- coord_to_pxy_R(as.data.frame(X), s = 0, cat_cols = seq_len(ncol(X)),
cont_cols = c(), lambda = bws_vec)
pxy <- pxy_list$pxy
# Run AIB for hierarchical clustering
best_clust <- AIB(pxy)
dendrogram <- make_dendrogram(best_clust$merges,
best_clust$merge_costs,
labels = row.names(X))
attr(dendrogram, "call") <- NULL
best_clust[[length(best_clust)+1]] <- dendrogram
names(best_clust)[length(best_clust)] <- "dendrogram"
return(best_clust)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.