CAIC: Consistent Akaike's Information Criterion and Consistent...

Description Usage Arguments Details Value References Examples

View source: R/CAIC.R

Description

Consistent Akaike's Information Criterion (CAIC) and Consistent Akaike's Information Criterion with Fisher Information (CAICF) for "lm" and "glm" objects.

Usage

1
2
3
CAIC(model)

CAICF(model)

Arguments

model

a "lm" or "glm" object.

Details

CAIC (Bozdogan, 1987) is calculated as

-2LL(theta) + k(log(n) + 1)

CAICF (Bozdogan, 1987) as

-2LL(theta) + 2k + k(log(n)) + log(|F|)

F is the Fisher information matrix.

Value

CAIC or CAICF measurement of the model.

References

Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
x1 <- rnorm(100, 3, 2)
x2 <- rnorm(100, 5, 3)
x3 <- rnorm(100, 67, 5)
err <- rnorm(100, 0, 4)

## round so we can use it for Poisson regression
y <- round(3 + 2*x1 - 5*x2 + 8*x3 + err)

m1 <- lm(y~x1 + x2 + x3)
m2 <- glm(y~x1 + x2 + x3, family = "gaussian")
m3 <- glm(y~x1 + x2 + x3, family = "poisson")

CAIC(m1)
CAIC(m2)
CAIC(m3)
CAICF(m1)
CAICF(m2)
CAICF(m3)

ICglm documentation built on Nov. 12, 2021, 1:06 a.m.

Related to CAIC in ICglm...