qgev.d | R Documentation |
Quantile function of duration-dependent GEV distribution (inverse of the cumulative probability distribution function)
qgev.d(p, mut, sigma0, xi, theta, eta, d, tau = 0, eta2 = 0, ...)
p |
vector of probabilities |
mut, sigma0, xi |
numeric value, giving modified location, modified scale and shape parameter |
theta |
numeric value, giving duration offset (defining curvature of the IDF curve for short durations) |
eta |
numeric value, giving duration exponent (defining slope of the IDF curve) |
d |
positive numeric value, giving duration |
tau |
numeric value, giving intensity offset τ (defining flattening of the IDF curve). Default: τ=0. |
eta2 |
numeric value, giving a second duration exponent η_{2} (needed for multiscaling). Default: η_2=0. |
... |
additional parameters passed to |
The duration dependent GEV distribution is defined after [Koutsoyiannis et al., 1998]:
G(x)= \exp[-≤ft( 1+ξ(x/σ(d)-μ_t) \right)^{-1/ξ}]
with the duration dependent scale σ(d)=σ_0/(d+θ)^η and modified location parameter μ_t=μ/σ(d).
For details on the d-GEV and the parameter definitions, see IDF-package.
list containing vectors of quantile values for given probabilities. The first element of the list are the q. values for the first given duration etc.
pgev.d
, dgev.d
, rgev.d
p <- c(0.5,0.9,0.99) # calulate quantiles for one duration qgev.d(p=p,mut=4,sigma0=2,xi=0,theta=0.1,eta=0.3, d=1) # calculate quantiles for sequence of durations ds <- 2^seq(0,4,0.1) qs <- lapply(ds,qgev.d,p=p,mut=4,sigma0=2,xi=0,theta=0.1,eta=0.3) qs <- simplify2array(qs) plot(ds,qs[1,],ylim=c(3,20),type='l',log = 'xy',ylab='Intensity',xlab = 'Duration') for(i in 2:3){ lines(ds,qs[i,],lty=i) } legend('topright',title = 'p-quantile', legend = p,lty=1:3,bty = 'n')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.