Description Usage Arguments Details Value Author(s) Examples
Calculate the percentage misclassification error for the given actuals and probaility scores.
1 | misClassError(actuals, predictedScores, threshold = 0.5)
|
actuals |
The actual binary flags for the response variable. It can take a numeric vector containing values of either 1 or 0, where 1 represents the 'Good' or 'Events' while 0 represents 'Bad' or 'Non-Events'. |
predictedScores |
The prediction probability scores for each observation. If your classification model gives the 1/0 predcitions, convert it to a numeric vector of 1's and 0's. |
threshold |
If predicted value is above the threshold, it will be considered as an event (1), else it will be a non-event (0). Defaults to 0.5. |
For a given binary response actuals and predicted probability scores, misclassfication error is the number of mismatches between the predicted and actuals direction of the binary y variable.
The misclassification error, which tells what proportion of predicted direction did not match with the actuals.
Selva Prabhakaran selva86@gmail.com
1 2 3 | data('ActualsAndScores')
misClassError(actuals=ActualsAndScores$Actuals,
predictedScores=ActualsAndScores$PredictedScores, threshold=0.5)
|
[1] 0.4294
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.