Description Usage Arguments Details Value Author(s) Examples
Calculate the precision or positive predictive value for a given set of actuals and predicted probability scores.
1 | precision(actuals, predictedScores, threshold = 0.5)
|
actuals |
The actual binary flags for the response variable. It can take a numeric vector containing values of either 1 or 0, where 1 represents the 'Good' or 'Events' while 0 represents 'Bad' or 'Non-Events'. |
predictedScores |
The prediction probability scores for each observation. If your classification model gives the 1/0 predcitions, convert it to a numeric vector of 1's and 0's. |
threshold |
If predicted value is above the threshold, it will be considered as an event (1), else it will be a non-event (0). Defaults to 0.5. |
For a given given binary response actuals and predicted probability scores, precision is defined as the proportion of observations with the event out of the total positive predictions.
The precision or the positive predictive value.
Selva Prabhakaran selva86@gmail.com
1 2 | data('ActualsAndScores')
precision(actuals=ActualsAndScores$Actuals, predictedScores=ActualsAndScores$PredictedScores)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.