View source: R/ConsensusMatPlot.R
ConsensusMatPlot | R Documentation |
Given the integrative NMF fit object, the function creates image plot of the consensus matrix ordered according to clusters groups. Cleaner block structure indicates stronger clusters.
ConsensusMatPlot(fit, rowLab = TRUE, colLab = TRUE)
fit |
A nmf.mnnals fit object |
rowLab |
If true row label is displayed. Default is TRUE. |
colLab |
If true column label is displayed. Default is TRUE. |
Image plot of the consensus matrix ordered according to cluster groups is returned.
Prabhakar Chalise, Rama Raghavan, Brooke Fridley
Brunnet J, Tamayo P Golub, T and Mesirov J (2004) Metagene and molecular pattern discovery using matrix factorization. PNAS, 101, 4164-4169
Monti S, Tamayo P, Mesirov J and Golup T (2003). Consesus Clustering: A resampling based method for class discovery and visualization of gene expression microarray data. Machine Learning J, 52:91-118.
prop <- c(0.20,0.30,0.27,0.23)
effect <- 2.5
sim.D <- InterSIM(n.sample=100,cluster.sample.prop=prop,delta.methyl=effect,
delta.expr=effect,delta.protein=effect,p.DMP=0.25,p.DEG=NULL,p.DEP=NULL,
do.plot=FALSE, sample.cluster=TRUE, feature.cluster=TRUE)
dat1 <- sim.D$dat.methyl
dat2 <- sim.D$dat.expr
dat3 <- sim.D$dat.protein
true.cluster.assignment <- sim.D$clustering.assignment
## Make all data positive by shifting to positive direction.
## Also rescale the datasets so that they are comparable.
if (!all(dat1>=0)) dat1 <- pmax(dat1 + abs(min(dat1)), .Machine$double.eps)
dat1 <- dat1/max(dat1)
if (!all(dat2>=0)) dat2 <- pmax(dat2 + abs(min(dat2)), .Machine$double.eps)
dat2 <- dat2/max(dat2)
if (!all(dat3>=0)) dat3 <- pmax(dat3 + abs(min(dat3)), .Machine$double.eps)
dat3 <- dat3/max(dat3)
# The function nmf.mnnals requires the samples to be on rows and variables on columns.
dat <- list(dat1,dat2,dat3)
fit <- nmf.mnnals(dat=dat,k=length(prop),maxiter=200,st.count=20,n.ini=15,ini.nndsvd=TRUE,
seed=TRUE)
ConsensusMatPlot(fit,rowLab=TRUE,colLab=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.