Nothing
#'
#' M_PCR_Train
#'
#' M_PCR_Train is the test set of the M_PCR model. It consists of Age,MeanDNE.Apex,MedianDNE.Apex,MeanDNE.Convex,MeanDNE.Concave,Proportion.DNEunder0.0001,Population. The number of rows is 272.
#'
#'
#'
#' @export
#'
M_PCR_Test<-{
Age<-c(35, 36, 44, 70, 67, 49, 44, 90, 61, 64, 71, 42, 61, 37, 38, 61, 45, 77, 76, 30, 60, 57, 41, 25, 34, 40, 59, 67, 63, 37, 71, 39, 30, 72, 42, 47, 49, 34, 32, 59, 67, 75, 55, 37, 93, 24, 64, 36, 88, 52, 40, 49, 91, 44, 50, 64, 57, 78, 44, 80, 72, 86, 71, 72, 78, 71, 79, 79, 68, 67, 67, 60, 70, 46, 72, 68, 80, 49, 20, 35, 69, 68, 80, 75, 75, 73, 48, 51, 93, 56, 75, 68, 54, 31, 39, 28, 56, 34, 47, 47, 66, 86, 42, 32, 67, 34, 70, 35, 45, 35, 35, 45, 28, 46, 46, 20, 41, 37, 48, 27, 72, 72, 65, 72, 40, 58, 78, 20, 61, 76, 76, 47,
66, 50, 42, 57, 66, 66, 59, 69, 84, 65, 27, 54, 75, 71, 69, 80, 31, 60, 43, 57, 69, 82, 63, 35, 54, 33, 72, 31, 31, 69, 72, 52, 51, 59, 54, 84, 59, 59, 59, 67, 49, 31, 56, 57, 57, 62, 33, 39, 38, 38, 62, 68, 68, 66, 52, 47, 55, 55, 54, 57, 25, 22, 45, 23, 28, 30, 49, 64, 30, 30, 66, 38, 48, 48, 64, 60, 45, 39, 49, 44, 34, 64, 68, 37, 63, 43, 67, 67, 92, 43, 30, 49, 76, 76, 32, 32, 74, 68, 83, 49, 84, 88, 30, 61, 85, 60, 60, 76, 79, 44, 36, 92, 83, 72, 72, 60, 60, 78, 85, 66, 66, 85, 48, 61, 85, 70, 87, 49, 76, 55, 64, 66, 66, 68, 68, 83, 68, 68, 85, 87)
MeanDNE.Apex<-c(0.023995, 0.023516, 0.024185, 0.023334, 0.036903, 0.041337, 0.030809, 0.051222, 0.035103, 0.057454, 0.031885, 0.037081, 0.038529, 0.032947, 0.029912, 0.02779, 0.03357, 0.059984, 0.02543, 0.032102, 0.044958, 0.024771, 0.033915, 0.022265, 0.02438, 0.026162, 0.03463, 0.035961, 0.049681, 0.027496, 0.038958, 0.020008, 0.02504, 0.043896, 0.018362, 0.032144, 0.03138, 0.025854, 0.017338, 0.021556, 0.034501, 0.032237, 0.040106, 0.024474, 0.063957, 0.019199, 0.023238, 0.019868, 0.044911, 0.044382, 0.016596, 0.021587, 0.05229, 0.034402, 0.034428, 0.028363, 0.033857, 0.045302, 0.038077, 0.048956, 0.037939, 0.050943, 0.036605, 0.033187, 0.036556, 0.043363, 0.036915, 0.044159, 0.042875, 0.048303, 0.036122, 0.028459, 0.03731, 0.032797, 0.031102, 0.034865, 0.032415, 0.027067, 0.029207, 0.03161, 0.036813, 0.031711, 0.033328, 0.037867, 0.035316, 0.040341, 0.037145, 0.034135, 0.040434, 0.033709, 0.032198, 0.04272,
0.034267, 0.031741, 0.026972, 0.028862, 0.033071, 0.034857, 0.031393, 0.026558, 0.036623, 0.039693, 0.033375, 0.040651, 0.039131, 0.02769, 0.040704, 0.025552, 0.030966, 0.032037, 0.032519, 0.036372, 0.026274, 0.036103, 0.030258, 0.032122, 0.027282, 0.035541, 0.029419, 0.031911, 0.031426, 0.038136, 0.04174, 0.041185, 0.02741, 0.036237, 0.037955, 0.025239, 0.041877, 0.032322, 0.037361, 0.033624, 0.040644, 0.038957, 0.031108, 0.030727, 0.035489, 0.03697, 0.027799, 0.037214, 0.036548, 0.034652, 0.026528, 0.032404, 0.034621, 0.044014, 0.039842, 0.03991, 0.02996, 0.035603, 0.031921, 0.035714, 0.034271, 0.039432, 0.036622, 0.026843, 0.028348, 0.028892, 0.0386, 0.028867, 0.024474, 0.03731, 0.035686, 0.035795, 0.034033, 0.03521, 0.03261, 0.032051, 0.033023, 0.035459, 0.035165, 0.035356, 0.031145, 0.024868, 0.032873, 0.027548, 0.035381, 0.032668, 0.029867, 0.031029, 0.030532, 0.03012, 0.037102, 0.034572, 0.030727, 0.034632, 0.028169, 0.030715, 0.034748, 0.032418, 0.02786, 0.031246,
0.040234, 0.03063, 0.033018, 0.025887, 0.026037, 0.031978, 0.036911, 0.038028, 0.029884, 0.030359, 0.032159, 0.03154, 0.033914, 0.031701, 0.035026, 0.039318, 0.032165, 0.029109, 0.030109, 0.034672, 0.033502, 0.02966, 0.031332, 0.026031, 0.035978, 0.033651, 0.03432, 0.034996, 0.047766, 0.02905, 0.025793, 0.027588, 0.038353, 0.042238, 0.03153, 0.03153, 0.03969, 0.035623, 0.033255, 0.037544, 0.036075, 0.037244, 0.032236, 0.029056, 0.035093, 0.035765, 0.024141, 0.04157, 0.030913, 0.032149, 0.026466, 0.036466, 0.036758, 0.040142, 0.039972, 0.036962, 0.036899, 0.039563, 0.03517, 0.030504, 0.036479, 0.049909, 0.034437, 0.032967, 0.05715, 0.038355, 0.041793, 0.035316, 0.041051, 0.029496, 0.052017, 0.032937, 0.030316, 0.042849, 0.041173, 0.038832, 0.037736, 0.049137, 0.053222, 0.045553)
MedianDNE.Apex<-c(0.005629, 0.006268, 0.008618, 0.007244, 0.013014, 0.018015, 0.015444, 0.016823, 0.015956, 0.019061, 0.014229, 0.013066, 0.007991, 0.010469, 0.010353, 0.011095, 0.01039, 0.020558, 0.012332, 0.005199, 0.011023, 0.018448, 0.009919, 0.002328, 0.005289, 0.009258, 0.009601, 0.008348, 0.011993, 0.009009, 0.021009, 0.007003, 0.006004, 0.013909, 0.016915, 0.019733, 0.014042, 0.008047, 0.004134, 0.011645, 0.016791, 0.018561, 0.011631, 0.007887, 0.018609, 0.001816, 0.018663, 0.009468, 0.014024, 0.010846, 0.016206, 0.012236, 0.022836, 0.008646, 0.010082, 0.008844, 0.010917, 0.01378, 0.018493, 0.016836, 0.00827, 0.020813, 0.013991, 0.014552, 0.016829, 0.01521, 0.014057, 0.013449, 0.01568, 0.011263, 0.01141, 0.012883, 0.014225, 0.012879, 0.013087, 0.013951, 0.013265, 0.011629, 0.009617, 0.012083, 0.013849, 0.013862, 0.020962, 0.01421, 0.014087, 0.012799, 0.00891, 0.014269, 0.016207, 0.01449,
0.010922, 0.01381, 0.010852, 0.01043, 0.010808, 0.009174, 0.01355, 0.0102, 0.010766, 0.010938, 0.01457, 0.01425, 0.010749, 0.009307, 0.014072, 0.010073, 0.012009, 0.010616, 0.011731, 0.010535, 0.010656, 0.011548, 0.009647, 0.010059, 0.011522, 0.010173, 0.011105, 0.010439, 0.0114, 0.009772, 0.0138, 0.013185, 0.011015, 0.016419, 0.011297, 0.010723, 0.014829, 0.006549, 0.012578, 0.014071, 0.012413, 0.011474, 0.015596, 0.014131, 0.011851, 0.012848, 0.010989, 0.011186, 0.012963, 0.012699, 0.014628, 0.013034, 0.009924, 0.013826, 0.014141, 0.014679, 0.011831, 0.015505, 0.0109, 0.013796, 0.011439, 0.011802, 0.013174, 0.013435, 0.013932, 0.010239, 0.010899, 0.010664, 0.011793, 0.010916, 0.009503, 0.013759, 0.014017, 0.010575, 0.011877, 0.015859, 0.011521, 0.012994, 0.012293, 0.011042, 0.012847, 0.013864, 0.010731, 0.009344, 0.013619, 0.012614, 0.011854, 0.010817, 0.010629, 0.012314, 0.010142, 0.011475, 0.011381, 0.013881, 0.012333, 0.013294, 0.012776,
0.011486, 0.01089, 0.011044, 0.012747, 0.012744, 0.009483, 0.009654, 0.011894, 0.009756, 0.009048, 0.008563, 0.011789, 0.013805, 0.009775, 0.010669, 0.011016, 0.010675, 0.012844, 0.013919, 0.013597, 0.014082, 0.011771, 0.00948, 0.011081, 0.01019, 0.010748, 0.012815, 0.01727, 0.011799, 0.011575, 0.008372, 0.013759, 0.013868, 0.016964, 0.011356, 0.009, 0.011614, 0.015923, 0.014759, 0.00864, 0.00864, 0.014062, 0.013931, 0.008726, 0.011154, 0.01502, 0.013717, 0.009434, 0.007519, 0.017276, 0.012585, 0.012949, 0.016858, 0.01218, 0.011683, 0.008562, 0.018562, 0.014461, 0.01452, 0.014744, 0.010535, 0.012017, 0.016078, 0.015883, 0.01149, 0.013923, 0.020503, 0.01083, 0.013135, 0.015148, 0.013879, 0.015908, 0.010518, 0.016458, 0.012544, 0.014952, 0.013624, 0.013771, 0.013643, 0.015953, 0.018655, 0.013445, 0.021453, 0.01007, 0.01784)
MeanDNE.Convex<-c(0.015016, 0.017385, 0.018398, 0.021517, 0.027663, 0.016489, 0.013801, 0.029683, 0.021251, 0.023137, 0.021239, 0.018926, 0.023867, 0.016904, 0.016816, 0.01849, 0.01787, 0.028183, 0.024055, 0.017616, 0.024742, 0.021254, 0.019172, 0.012886, 0.020296, 0.016644, 0.0205, 0.018654, 0.020894, 0.015406, 0.021429, 0.021617, 0.018623, 0.024076, 0.022037, 0.015267, 0.025629, 0.015868, 0.016815, 0.019014, 0.029544, 0.022564, 0.018615, 0.02063, 0.029684, 0.014716, 0.019444, 0.018647, 0.028985, 0.017046, 0.017206, 0.021848, 0.036171, 0.018311, 0.018668, 0.019289, 0.020323, 0.023231, 0.019198, 0.027385, 0.024673, 0.028419, 0.021645, 0.021916, 0.024915, 0.024014, 0.025882, 0.021975, 0.021264, 0.024375, 0.022466, 0.018581, 0.02284, 0.022781, 0.024963, 0.020626, 0.023958, 0.015298, 0.017086, 0.016341, 0.022682, 0.021623, 0.022685, 0.022651, 0.023511, 0.021383, 0.01962, 0.020412, 0.024074,
0.022395, 0.019763, 0.02272, 0.020828, 0.018334, 0.018342, 0.020517, 0.020165, 0.018576, 0.019626, 0.020466, 0.018927, 0.018386, 0.017957, 0.018012, 0.022742, 0.020553, 0.022162, 0.021823, 0.020512, 0.018224, 0.018709, 0.01872, 0.020775, 0.019635, 0.020682, 0.017244, 0.019281, 0.019501, 0.020663, 0.016017, 0.02129, 0.023225, 0.021727, 0.022808, 0.018959, 0.020765, 0.021824, 0.015671, 0.023239, 0.020817, 0.022851, 0.018878, 0.023745, 0.020355, 0.015976, 0.021741, 0.02025, 0.019175, 0.018264, 0.021319, 0.026882, 0.021864, 0.018163, 0.022792, 0.025457, 0.022844, 0.02275, 0.021595, 0.020499, 0.021732, 0.021205, 0.019068, 0.02155, 0.023003, 0.021575, 0.016667, 0.021651, 0.018258, 0.020093, 0.018508, 0.018317, 0.019345, 0.019655, 0.021588, 0.021768, 0.021704, 0.02042, 0.025293, 0.023597, 0.021704, 0.021445, 0.021323, 0.020141, 0.016812, 0.021675, 0.02275, 0.018491, 0.021556, 0.01788, 0.017361, 0.016947, 0.020245,
0.022051, 0.021754, 0.019711, 0.020478, 0.01635, 0.022812, 0.018651, 0.021649, 0.021568, 0.022776, 0.01725, 0.015056, 0.019467, 0.015337, 0.018411, 0.018381, 0.018139, 0.016182, 0.018369, 0.017051, 0.021709, 0.019568, 0.019338, 0.020253, 0.021629, 0.022731, 0.019594, 0.019705, 0.021655, 0.01936, 0.018253, 0.018073, 0.019357, 0.018241, 0.024026, 0.019643, 0.02474, 0.022256, 0.025848, 0.021739, 0.018534, 0.019908, 0.025797, 0.019203, 0.018432, 0.018432, 0.024492, 0.019318, 0.023831, 0.023241, 0.022888, 0.024324, 0.019738, 0.021538, 0.020693, 0.021809, 0.021751, 0.022769, 0.021869, 0.019501, 0.020025, 0.026576, 0.026271, 0.020551, 0.019704, 0.020886, 0.021648, 0.023763, 0.021753, 0.02338, 0.021542, 0.02304, 0.021621, 0.022697, 0.021962, 0.019427, 0.026577, 0.021515, 0.020709, 0.023681, 0.020157, 0.025086, 0.022078, 0.02393, 0.023977, 0.024964, 0.019242, 0.022237, 0.025381, 0.024117)
MeanDNE.Concave<-c(0.018855, 0.013588, 0.030405, 0.032122, 0.030369, 0.024961, 0.028836, 0.031925, 0.02115, 0.029464, 0.018238, 0.024506, 0.024986, 0.017358, 0.023586, 0.029743, 0.015972, 0.037323, 0.031436, 0.012662, 0.031839, 0.028724, 0.024818, 0.010081, 0.020288, 0.021134, 0.021926, 0.029073, 0.021046, 0.017483, 0.02987, 0.013228, 0.013369, 0.02739, 0.027692, 0.022889, 0.01762, 0.015792, 0.015145, 0.025289, 0.021683, 0.036989, 0.021251, 0.01744, 0.037204, 0.015658, 0.034198, 0.016018, 0.028114, 0.024031, 0.022048, 0.023342, 0.043048, 0.019448, 0.019398, 0.031235, 0.022277, 0.02377, 0.02844, 0.033331, 0.036477, 0.035245, 0.024247, 0.025375, 0.029874, 0.028372, 0.031048, 0.025495, 0.023349, 0.029046, 0.026024, 0.019186, 0.026974, 0.026731, 0.029958, 0.022605, 0.028233, 0.013819, 0.015695, 0.014615, 0.026471, 0.024178, 0.02649, 0.026301, 0.027662, 0.023574, 0.020812, 0.022176, 0.028406, 0.025932, 0.021214,
0.026511, 0.023054, 0.018306, 0.018323, 0.02243, 0.021729, 0.019184, 0.020852, 0.02237, 0.019588, 0.018528, 0.017285, 0.017391, 0.026635, 0.022497, 0.025748, 0.024982, 0.022416, 0.018071, 0.019315, 0.019375, 0.022961, 0.020918, 0.022651, 0.016183, 0.020178, 0.02057, 0.022645, 0.014406, 0.023404, 0.027453, 0.024622, 0.026815, 0.019632, 0.022901, 0.024994, 0.014081, 0.027454, 0.023034, 0.027059, 0.019513, 0.027982, 0.022004, 0.0144, 0.024687, 0.021907, 0.019927, 0.018229, 0.023416, 0.032275, 0.02514, 0.017846, 0.026071, 0.030478, 0.027014, 0.026661, 0.024056, 0.022386, 0.024649, 0.023277, 0.019748, 0.023849, 0.027237, 0.023979, 0.015143, 0.024323, 0.018228, 0.021589, 0.018853, 0.018242, 0.020345, 0.020977, 0.024043, 0.024835, 0.024485, 0.022189, 0.030451, 0.027769, 0.024517, 0.023665, 0.023419, 0.021633, 0.015271, 0.024328, 0.026684, 0.018665, 0.023851, 0.017266, 0.016705, 0.015408, 0.021878, 0.025547, 0.024761, 0.021085, 0.022371, 0.014676,
0.026819, 0.019296, 0.024306, 0.023925, 0.026726, 0.016312, 0.013765, 0.020567, 0.013824, 0.018569, 0.018477, 0.017761, 0.014416, 0.018447, 0.015483, 0.024559, 0.020681, 0.020246, 0.02191, 0.024209, 0.02652, 0.02071, 0.021082, 0.024324, 0.020424, 0.018228, 0.017587, 0.020397, 0.018225, 0.028387, 0.020958, 0.029558, 0.025856, 0.030915, 0.024687, 0.019022, 0.021383, 0.030853, 0.019932, 0.018587, 0.018587, 0.029223, 0.020181, 0.028069, 0.027458, 0.027096, 0.028965, 0.021119, 0.02378, 0.022743, 0.024917, 0.024724, 0.026719, 0.025188, 0.020594, 0.021491, 0.032093, 0.031625, 0.022481, 0.021069, 0.023078, 0.024282, 0.028045, 0.024756, 0.027528, 0.023799, 0.0273, 0.024173, 0.026506, 0.025472, 0.020497, 0.03225, 0.023752, 0.022787, 0.027843, 0.019141, 0.030251, 0.02558, 0.028196, 0.028361, 0.029982, 0.019977, 0.031014, 0.031858, 0.028566)
Proportion.DNEunder0.0001<-c(0.007644, 0.005771, 0.005013, 0.00391, 0.005067, 0.006288, 0.006744, 0.00463, 0.004752, 0.005302, 0.004179, 0.008466, 0.003885, 0.005997, 0.006476, 0.003262, 0.007565, 0.003516, 0.002677, 0.008222, 0.006287, 0.005655, 0.004896, 0.007623, 0.008645, 0.006296, 0.00708, 0.005562, 0.004236, 0.007247, 0.004962, 0.005351, 0.005399, 0.002142, 0.004551, 0.005579, 0.004704, 0.007073, 0.007301, 0.006508, 0.003167, 0.004668, 0.005903, 0.009209, 0.002539, 0.008017, 0.004738, 0.004906, 0.003192, 0.004391, 0.008946, 0.003897, 0.002104, 0.005505, 0.004867, 0.006787, 0.00454, 0.002524, 0.006982, 0.002331, 0.003206, 0.002548, 0.005563, 0.004631, 0.004029, 0.004327, 0.004697, 0.004612, 0.004315, 0.004195, 0.004393, 0.004992, 0.004243, 0.005346, 0.004291, 0.005227, 0.004579, 0.005184, 0.006943, 0.004811, 0.004696, 0.004632, 0.004897, 0.004195, 0.004455, 0.004378, 0.005175, 0.005329, 0.00406, 0.005046, 0.004024, 0.004839, 0.00487, 0.005335, 0.005001, 0.00542, 0.005709,
0.006232, 0.005375, 0.00511, 0.004967, 0.003911, 0.004734, 0.00576, 0.003941, 0.005691, 0.003887, 0.005049, 0.005228, 0.005316, 0.005715, 0.0059, 0.006473, 0.005692, 0.003745, 0.005169, 0.006063, 0.006954, 0.005323, 0.005795, 0.004318, 0.004363, 0.004963, 0.003955, 0.003566, 0.005076, 0.004817, 0.005758, 0.004684, 0.004373, 0.004478, 0.005044, 0.004345, 0.005317, 0.005518, 0.005473, 0.004218, 0.004245, 0.004664, 0.005647, 0.00375, 0.004959, 0.00596, 0.005115, 0.004049, 0.004603, 0.003919, 0.005076, 0.005408, 0.004654, 0.005247, 0.005122, 0.006928, 0.005734, 0.005082, 0.005497, 0.005784, 0.00574, 0.004684, 0.005089, 0.005812, 0.004737, 0.005745, 0.005428, 0.005045, 0.005179, 0.005469, 0.004066, 0.004375, 0.005567, 0.00491, 0.004795, 0.00546, 0.005087, 0.004795, 0.005591, 0.005209, 0.005388, 0.005309, 0.005344, 0.004712, 0.005357, 0.004313, 0.004938, 0.004291, 0.004135, 0.00518, 0.004554, 0.005072, 0.00534, 0.004852, 0.004741, 0.005377, 0.006771, 0.005351, 0.005655,
0.00552, 0.00597, 0.005286, 0.004494, 0.0062, 0.005306, 0.004746, 0.005939, 0.005422, 0.005575, 0.004941, 0.004791, 0.006026, 0.005413, 0.005261, 0.006481, 0.005819, 0.005215, 0.004476, 0.005821, 0.004715, 0.005255, 0.004103, 0.004835, 0.003494, 0.004897, 0.006303, 0.005107, 0.004754, 0.00439, 0.005848, 0.005848, 0.004596, 0.004955, 0.004256, 0.005127, 0.004609, 0.004184, 0.005139, 0.004346, 0.004728, 0.00518, 0.005385, 0.004492, 0.004674, 0.005981, 0.00544, 0.003977, 0.004429, 0.004366, 0.004569, 0.00475, 0.004986, 0.005718, 0.004192, 0.004927, 0.00455, 0.003957, 0.005171, 0.004366, 0.004222, 0.004823, 0.004214, 0.005274, 0.004622, 0.004618, 0.004155, 0.005023, 0.004984, 0.004514, 0.004355, 0.004591, 0.004893, 0.004671, 0.00431, 0.004416)
Population<-c("Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian", "Southeast Asian",
"Southeast Asian", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European",
"European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "European", "Southeast Asian", "European", "European", "European", "European", "European", "European", "Southeast Asian", "Southeast Asian", "European")
M_PCR_Test <- data.frame(Age,MeanDNE.Apex,MedianDNE.Apex,MeanDNE.Convex,MeanDNE.Concave,Proportion.DNEunder0.0001,Population)
M_PCR_Test
}
#' @examples
#' M_PCR_Test
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.