# normal_bs: A Normal Monte Carlo Option Pricing Algorithm In Jdmbs: Monte Carlo Option Pricing Algorithms for Jump Diffusion Models with Correlational Companies

## Description

A Normal Monte Carlo Option Pricing Algorithm

## Usage

 ```1 2 3``` ```normal_bs(companies, simulation.length = 180, monte_carlo = 1000, start_price = start_price, mu = mu, sigma = sigma, K = K, color = color) ```

## Arguments

 `companies` : an integer of a company number in order to simulate. `simulation.length` : an integer of a time duration of simulation. `monte_carlo` : an integer of an iteration number for monte carlo. `start_price` : a vector of company's initial stock prices. `mu` : a vector of drift parameters of geometric Brownian motion. `sigma` : a vector of volatility parameters of geometric Brownian motion. `K` : a vector of option strike prices. `color` : a vector of colors in plot.

## Value

option prices : a list of (call_price, put_price)

## Examples

 `1` ```price <- normal_bs(1, simulation.length=50, monte_carlo=100,1000, 0.007, 0.03, 1500, "blue") ```

### Example output

```[1] "Call Option Price:"
[1] 539.3822
[1] "Put Option Price:"
[1] 853.766
```

Jdmbs documentation built on May 2, 2018, 1:04 a.m.