Nothing
#' KScorrect: Lilliefors-Corrected Kolmogorov-Smirnov Goodness-of-Fit Tests
#'
#' Implements the Lilliefors-corrected Kolmogorov-Smirnov test for use in
#' goodness-of-fit tests.
#'
#' KScorrect implements the Lilliefors-corrected Kolmogorov-Smirnov test for
#' use in goodness-of-fit tests, suitable when population parameters are unknown
#' and must be estimated by sample statistics. \emph{P}-values are estimated by
#' simulation. Coded to complement \code{\link[stats]{ks.test}}, it can be used
#' with a variety of continuous distributions, including normal, lognormal,
#' univariate mixtures of normals, uniform, loguniform, exponential, gamma, and
#' Weibull distributions.
#'
#' Functions to generate random numbers and calculate density, distribution, and
#' quantile functions are provided for use with the loguniform and mixture
#' distributions.
#'
#' @author Phil Novack-Gottshall \email{pnovack-gottshall@@ben.edu}
#' @author Steve C. Wang \email{scwang@@swarthmore.edu}
#' @name KScorrect-package
#' @aliases KScorrect-package KScorrect
#' @docType package
#'
#' @examples
#' # Get the package version and citation of KScorrect
#' packageVersion("KScorrect")
#' citation("KScorrect")
#'
#' x <- runif(200)
#' Lc <- LcKS(x, cdf="pnorm", nreps=999)
#' hist(Lc$D.sim)
#' abline(v = Lc$D.obs, lty = 2)
#' print(Lc, max=50) # Print first 50 simulated statistics
#' # Approximate p-value (usually) << 0.05
#'
#' # Confirmation uncorrected version has increased Type II error rate when
#' # using sample statistics to estimate parameters:
#' ks.test(x, "pnorm", mean(x), sd(x)) # p-value always larger, (usually) > 0.05
#'
#' x <- rlunif(200, min=exp(1), max=exp(10)) # random loguniform sample
#' Lc <- LcKS(x, cdf="plnorm")
#' Lc$p.value # Approximate p-value: (usually) << 0.05
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.