Description Usage Arguments Details Value Examples
View source: R/optim.diff.norm.R
Estimates the mean
mu and parameters of the variance-covariance matrix
sigma of a multinormal distribution for the measurements with
a general variance-covariance matrix identical for all classes.
| 1 | optim.diff.norm(y, status, weight, param, x = NULL, var.list = NULL)
 | 
|  y  | a matrix of continuous measurements (only for symptomatic subjects), | 
|  status  | symptom status of all individuals, | 
|  weight  |  a matrix of  | 
|  param  |  a list of measurement density parameters, here is a list of  | 
|  x  |  a matrix of covariates (optional). Default id  | 
|  var.list  |  a list of integers indicating which covariates (taken from  | 
The values of explicit estimators are computed for both mu and
sigma. The variance-covariance matrices sigma are
identical  for all classes. Treatment of covariates is not yet implemented, and any
provided covariate value will be ignored.
The function returns a list of estimated parameters param.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | #data
data(ped.cont)
status <- ped.cont[,6]
y <- ped.cont[,7:ncol(ped.cont)]
data(peel)
#probs and param
data(probs)
data(param.cont)
#e step
weight <- e.step(ped.cont,probs,param.cont,dens.norm,peel,x=NULL,
                 var.list=NULL,famdep=TRUE)$w
weight <- matrix(weight[,1,1:length(probs$p)],nrow=nrow(ped.cont),
                 ncol=length(probs$p))
#the function
optim.diff.norm(y[status==2,],status,weight,param.cont,x=NULL,
                 var.list=NULL)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.