LCMCR-package | R Documentation |
This package implements a fully Bayesian multiple-recapture method for estimating the unknown size of a population using non-parametric latent class models. This is an implementation of the method described in Manrique-Vallier (2016). The estimation algorithm is based on Markov Chain Monte Carlo sampling.
Package: | LCMCR |
Type: | Package |
Version: | 0.4.14 |
Date: | 2023-12-13 |
License: | GPL >= 2 |
Daniel Manrique-Vallier dmanriqu@indiana.edu
Manrique-Vallier, D. (2016) "Bayesian Population Size Estimation Using Dirichlet Process Mixtures", Biometrics.
library('LCMCR')
###Using Kosovo data.###
data(kosovo_aggregate)
###Example 1: Capture-Recapture estimation using convenience functions###
#Create and initialize an LCMCR object for MCMC sampling#
## Not run:
sampler <- lcmCR(captures = kosovo_aggregate, tabular = FALSE, in_list_label = '1',
not_in_list_label = '0', K = 10, a_alpha = 0.25, b_alpha = 0.25,
seed = 'auto', buffer_size = 10000, thinning = 100)
#Obtain 1000 samples from the posterior distribution of N#
N <- lcmCR_PostSampl(sampler, burnin = 10000, samples = 1000, thinning = 100, output = FALSE)
#Posterior quantiles#
quantile(N, c(0.025, 0.5, 0.975))
###Example 2: Capture-Recapture estimation using the lcm_CR_Basic object directly###
#Create and initialize an LCMCR object for MCMC sampling#
sampler <- lcmCR(captures = kosovo_aggregate, tabular = FALSE, in_list_label = '1',
not_in_list_label = '0', K = 10, a_alpha = 0.25, b_alpha = 0.25,
seed = 'auto', buffer_size = 1000, thinning = 100)
#Run 10000 iterations as burn-in
sampler$Update(10000, output = FALSE)
#List all parameters from the model
sampler$Get_Param_List()
#Set parameter 'n0' for tracing
sampler$Set_Trace('n0')
#List currently traced parameters.
sampler$Get_Trace_List()
#Activate tracing
sampler$Activate_Tracing()
#Run the sampler 100000 times
sampler$Update(100000, output = FALSE)
#Get the 1000 samples from the posterior distribution of N
N <- sampler$Get_Trace('n0') + sampler$n
#Plot the trace of N
plot(N, type = 'l')
#Compute posterior quantiles
quantile(N, c(0.025, 0.5, 0.975))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.