FanPC_LFM | R Documentation |
This function performs Factor Analysis via Principal Component (FanPC) on a given data set. It calculates the estimated factor loading matrix (AF), specific variance matrix (DF), and the mean squared errors.
FanPC_LFM(data, m, A, D, p)
data |
A matrix of input data. |
m |
The number of principal components. |
A |
The true factor loadings matrix. |
D |
The true uniquenesses matrix. |
p |
The number of variables. |
A list containing:
AF |
Estimated factor loadings. |
DF |
Estimated uniquenesses. |
MSESigmaA |
Mean squared error for factor loadings. |
MSESigmaD |
Mean squared error for uniquenesses. |
LSigmaA |
Loss metric for factor loadings. |
LSigmaD |
Loss metric for uniquenesses. |
library(SOPC)
library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- FanPC_LFM(data, m, A, D, p)
print(results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.