GulPC_LFM | R Documentation |
This function performs General Unilateral Loading Principal Component (GulPC) analysis on a given data set. It calculates the estimated values for the first layer and second layer loadings, specific variances, and the mean squared errors.
GulPC_LFM(data, m, A, D)
data |
A matrix of input data. |
m |
The number of principal components. |
A |
The true factor loadings matrix. |
D |
The true uniquenesses matrix. |
A list containing:
AU1 |
The first layer loading matrix. |
AU2 |
The second layer loading matrix. |
DU3 |
The estimated specific variance matrix. |
MSESigmaD |
Mean squared error for uniquenesses. |
LSigmaD |
Loss metric for uniquenesses. |
library(SOPC)
library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- GulPC_LFM(data, m, A, D)
print(results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.