Defines functions getClusterDivisive.details

Documented in getClusterDivisive.details

#' @title To explain how to get the clusters with maximal distance.
#' @description To explain how to get the clusters with the maximal distance value. By using the given \code{distance},
#' it gets the matrix index.
#' @param vector is a numeric vector.
#' @param distance is a number. It should be in the matrix.
#' @details This function is part of the hierarchical clusterization method. The function uses the
#' \code{distance} value and gets the clustersId with the minimal distance.
#' @details For the divisive algorithm, it chooses the distances from a distances list.
#' @author Roberto Alcántara \email{roberto.alcantara@@edu.uah.es}
#' @author Juan José Cuadrado \email{jjcg@@uah.es}
#' @author Universidad de Alcalá de Henares
#' @return A cluster. Explanation.
#' @examples
#' getClusterDivisive.details(2,c(1:10))
#' getClusterDivisive(6,c(2,4,6,8,10,12))
#' @export

getClusterDivisive.details <- function(distance,vector){
  message("\n 'getCluster' method searches the cluster which have the distance to the target given. \n\n")
  message(" Search for ", distance, " in: \n")
  found <- FALSE
  index <- 1
  while(!found & (index < length(vector))){

    if(vector[index] == distance){
      found <- TRUE
    } else {
      index <- index + 1
  cluster <- index %% (length(vector))
  cluster <- if(cluster == 0) (length(vector)) else cluster
  message("\n The cluster with the minimum distance is: ", cluster, "\n")

Try the LearnClust package in your browser

Any scripts or data that you put into this service are public.

LearnClust documentation built on Nov. 30, 2020, 1:09 a.m.