View source: R/Module_composition.R
Module_composition | R Documentation |
This function analyzes the composition of modules within a network object, providing a visual and data summary based on taxonomic levels.
Module_composition(
network_obj,
No.module,
taxlevel = "Phylum",
mode = "all",
top_n = NULL,
palette = "Set1",
select_tax = NULL,
rmprefix = NULL
)
network_obj |
Network analysis results generated from |
No.module |
Numeric or numeric vector of No.module |
taxlevel |
Taxonomy levels used for visualization.Must be one of c("Domain","Phylum","Class","Order","Family","Genus","Species","Base").Default:"Phylum". |
mode |
The mode for selecting which taxa to plot: "all" for all taxa, "most" for the top N taxa, and "select" for specific taxa selection |
top_n |
The number of top taxa to plot when mode is set to "most" |
palette |
Character. Palette for visualization,default:"Set1".See optional palette in same as 'RColorBrewer'. And "Plan1" to "Plan10" were also optional,see in |
select_tax |
A vector of taxa to be selected for plotting when mode is "select". |
rmprefix |
A string prefix to be removed from the taxonomic annotation |
The function returns a list containing pie chart of specific module,corresponding source data and color assignments
#Data loading
data("Two_group")
# Network analysis
network_Two_group <- network_analysis(
taxobj = Two_group,
taxlevel = "Genus",
reads = TRUE,
n = 8,
threshold = 0.7
)
# Show all taxa
module_results <- Module_composition(
network_obj = network_Two_group,
No.module = c(2, 5),
taxlevel = "Phylum"
)
print(module_results$Module5$Pie)
print(module_results$Module2$Pie) # View pie chart
head(module_results$Module2$source_data_Module2) # View source data for pie chart
print(module_results$aes_color) # Check aesthetic color
# Show taxa with top five frequency
module_results <- Module_composition(
network_obj = network_Two_group,
No.module = c(2, 5),
taxlevel = "Phylum",
mode = "most",
top_n = 5
)
print(module_results$Module2$Pie_plot_Module2)
# Show specific taxa
community <- community_plot(
taxobj = Two_group,
taxlevel = "Phylum",
n = 5,
palette = "Paired"
) # Get top 5 dominant phyla
top5_phyla <- names(community$filled_color)
module_results <- Module_composition(
network_obj = network_Two_group,
No.module = c(2, 5),
taxlevel = "Phylum",
mode = "select",
palette = community$filled_color,
select_tax = top5_phyla
)
print(module_results$Module2$Pie_plot_Module2)
# Specific taxa with no prefix 'p__'
module_results <- Module_composition(
network_obj = network_Two_group,
No.module = 2,
taxlevel = "Phylum",
mode = "select",
select_tax = c("Proteobacteria", "Actinobacteria")
)
print(module_results$Module2$Pie_plot_Module2)
# Remove 'p__' prefix
module_results <- Module_composition(
network_obj = network_Two_group,
No.module = 2,
taxlevel = "Phylum",
mode = "most",
top_n = 5,
palette = "Set2",
rmprefix = "p__"
)
print(module_results$Module2$Pie_plot_Module2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.