Description Usage Arguments Value Author(s) Examples
This function allows you to estimate the MARX model by t-MLE.
1 | marx.t(y, x, p_C, p_NC, params0)
|
y |
Data vector of time series observations. |
x |
Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted. |
p_C |
Number of lags. |
p_NC |
Number of leads. |
params0 |
Starting values for the parameters to be estimated (both model and distributional parameters). |
coef.c |
Estimated causal coefficients. |
coef.nc |
Estimated noncausal coefficients. |
coef.exo |
Estimated exogenous coefficients. |
coef.int |
Estimated intercept. |
scale |
Estimated scale parameter. |
df |
Estimated degrees of freedom. |
residuals |
Residuals. |
se.dist |
Standard errors of the distributional parameters. |
Sean Telg
1 2 | |
$coef.c
[1] 0.3435036
$coef.nc
[1] 0.4482843
$coef.exo
[1] 0.3602371
$coef.int
[1] -0.0007735896
$scale
[1] 1.002721
$df
[1] 2.878963
$residuals
[1] -0.112437039 0.591265265 0.787010861 -0.122115267 -1.484140064
[6] 0.001678685 -1.177051996 3.430558904 1.489499284 -2.277838004
[11] -0.245163630 -1.020948707 -0.572439083 2.378330290 -1.111749202
[16] 1.213763728 -0.032353231 0.036053838 7.028472784 3.369210490
[21] -0.387951283 1.110670829 2.023123065 -2.836225299 0.919648320
[26] 0.975323874 0.124070050 1.073047373 -0.998145608 -0.494442149
[31] -0.220317791 -4.051714690 -1.551627533 0.501805224 0.046339345
[36] -1.469577937 0.200402708 -1.164507008 1.094488283 0.444882090
[41] 0.375066069 2.022488679 -1.292328803 -0.371091933 2.722126444
[46] 1.076539366 -1.456742454 0.132968141 -1.706730719 0.132425918
[51] 2.688787556 -0.649598530 -3.141155734 2.421487991 -0.793765334
[56] -0.005109873 -0.553428996 0.213755205 1.313355643 0.372318699
[61] -0.041520926 -0.479082736 0.536395230 -1.375999519 -2.547114961
[66] 0.239048575 -0.087715252 0.486639065 -1.719749442 -0.387375710
[71] 0.025924188 0.514015911 -0.060349165 -0.276547459 1.470836494
[76] 2.383577219 -3.186565313 -0.622378967 -1.468313928 -0.363586327
[81] 1.266412388 -0.595887475 0.699901960 -0.061600904 -0.078025846
[86] -0.152573949 0.110884484 -1.129736705 0.676222895 -0.257331448
[91] 0.614805373 0.168246469 3.664362574 -0.118483495 -0.210995942
[96] 1.807843084 0.301286129 -1.904757880
$se.dist
[1] 1.172622 0.162562
Warning messages:
1: In sqrt(df1 * pi * sig1^2) : NaNs produced
2: In log(1 + (E/sig1)^2/df1) : NaNs produced
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.