knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo = TRUE, fig.width = 6, message = FALSE, warning = FALSE )
MBMethPred is a user-friendly package developed for the accurate prediction of medulloblastoma subgroups using DNA methylation beta values. It incorporates seven machine learning models, including Random Forest, K-Nearest Neighbors, Support Vector Machine, Linear Discriminant Analysis, Extreme Gradient Boosting, Naive Bayes, and a neural network model specifically designed for the complexities of medulloblastoma data. The package provides streamlined workflows for data preprocessing, feature selection, model training, cross-validation, and prediction. This vignette offers detailed explanations, examples, and resulting outputs for each functionality. The MBMethPred package was tested on an Ubuntu machine equipped with an Intel Core i5-6200U processor and 16GB RAM.
require(MBMethPred)
The ReadMethylFile
is a function for reading DNA methylation beta values files and use them as new data for prediction by every model. The input for this function should be either CSV or TSV file format. Please uncomment the following lines and run the function.
# set.seed(1234) # fac <- ncol(Data1) # NewData <- sample(data.frame(t(Data1[,-fac])),10) # NewData <- cbind(rownames(NewData), NewData) # colnames(NewData)[1] <- "ID" # write.csv(NewData, "NewData.csv", quote = FALSE, row.names = FALSE) # methyl <- ReadMethylFile(File = "NewData.csv")
This function has only one argument, the File. The first column of the File is the CpG methylation probe that starts with cg characters and is followed by a number (e.g., cg100091). Other columns are samples with methylation beta values. All columns in the data frame should have a name.
The BoxPlot
function draws a box plot out of DNA methylation beta values or other data frames.
data <- Data2[1:20,] data <- cbind(rownames(data), data) colnames(data)[1] <- "ID" BoxPlot(File = data, Projname = NULL)
This function has two arguments as follow:
File
A data frame with the first column as ID. Projname
A string to name the plot.The TSNEPlot
function draws a 3D t-SNE plot for DNA methylation dataset using the K-means clustering technique. This function has two arguments File
(any matrices) and NCluster
( number of clusters for K-Means clustering).
data <- data.frame(t(Data2[1:100,])) data <- cbind(rownames(data), data) colnames(data)[1] <- "ID" TSNEPlot(File = data, NCluster = 4)
An R window will appear with a 3D projection of the t-SNE result. The plot object can be saved with the next line of code (uncomment).
# rgl.snapshot('tsne3d.png', fmt = 'png')
Using ReadSNFData
function, one can read files (any matrices with CSV or TSV format) and feed them into the similarity network fusion (SNF) function (from the SNFtools package). Please uncomment the following lines and run the function.
# data(Data2) # Gene expression # Data2 <- cbind(rownames(Data2), Data2) # colnames(Data2)[1] <- "ID" # write.csv(Data2, "Data2.csv", row.names = FALSE) # Data2 <- ReadSNFData(File = "Data2.csv")
The SimilarityNetworkFusion
is a function to perform SNF function (from SNFtool package) and output clusters.
data(RLabels) # Real labels data(Data2) # Methylation data(Data3) # Gene expression snf <- SimilarityNetworkFusion(Files = list(Data2, Data3), NNeighbors = 13, Sigma = 0.75, NClusters = 4, CLabels = c("Group4", "SHH", "WNT", "Group3"), RLabels = RLabels, Niterations = 60) snf
This function has several arguments as follow:
Files
A list of data frames created using the ReadSNFData function.NNeighbors
The number of nearest neighbors.Sigma
The variance for local model.NClusters
The number of clusters.CLabels
A string vector to name the clusters. Optional.RLabels
The actual label of samples to calculate the Normalized Mutual Information (NMI) score. Optional.Niterations
The number of iterations for the diffusion process.The SupportVectorMachineModel
is a function to train a support vector machine model to classify medulloblastoma subgroups using DNA methylation beta values (Illumina Infinium HumanMethylation450). Prediction is followed by training if new data is provided.
Model metrics, including accuracy, precision, sensitivity F1-Score, specificity, and AUC_average can be calculated for the test dataset using the ModelMetrics
function, which calculates the average of the above parameters from the result of the ConfusionMatrix
function.
The prediction result on new data can be accessed through the NewDataPredictionResult
function, which calculates every prediction's mode across the number of cross-validation folds.
set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" svm <- SupportVectorMachineModel(SplitRatio = 0.8, CV = 10, NCores = 1, NewData = NewData) ModelMetrics(Model = svm) NewDataPredictionResult(Model = svm)
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.NCores
The number of cores for parallel computing.NewData
A methylation beta values input from the ReadMethylFile function. The KNearestNeighborModel
is a function to train a K nearest neighbor model to classify medulloblastoma subgroups using DNA methylation beta values.
set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" knn <- KNearestNeighborModel(SplitRatio = 0.8, CV = 10, K = 3, NCores = 1, NewData = NewData) ModelMetrics(Model = knn) NewDataPredictionResult(Model = knn)
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.K
The number of nearest neighbors.NCores
The number of cores for parallel computing.NewData
A methylation beta values input from the ReadMethylFile function.The RandomForestModel
is a function to train a random forest model to classify medulloblastoma subgroups using DNA methylation beta values.
set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" rf <- RandomForestModel(SplitRatio = 0.8, CV = 10, NTree = 100, NCores = 1, NewData = NewData) ModelMetrics(Model = rf) NewDataPredictionResult(Model = rf)
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.NTree
The number of trees to be grown.NCores
The number of cores for parallel computing.NewData
A methylation beta values input from the ReadMethylFile function. The XGBoostModel
is a A function to train an XGBoost model to classify medulloblastoma subgroups using DNA methylation beta values.
set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" xgboost <- XGBoostModel(SplitRatio = 0.8, CV = 10, NCores = 1, NewData = NewData) ModelMetrics(Model = xgboost) NewDataPredictionResult(Model = xgboost)
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.NCores
The number of cores for parallel computing.NewData
A methylation beta values input from the ReadMethylFile function. The LinearDiscriminantAnalysisModel
is a function to train a linear discriminant analysis model to classify medulloblastoma subgroups using DNA methylation beta values.
set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" lda <- LinearDiscriminantAnalysisModel(SplitRatio = 0.8, CV = 10, NCores = 1, NewData = NewData) ModelMetrics(Model = lda) NewDataPredictionResult(Model = lda)
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.NCores
The number of cores for parallel computing.NewData
A methylation beta values input from the ReadMethylFile function. The NaiveBayesModel
is a function to train a Naive Bayes model to classify medulloblastoma subgroups using DNA methylation beta values.
set.seed(1234) fac <- ncol(Data1) NewData <- sample(data.frame(t(Data1[,-fac])),10) NewData <- cbind(rownames(NewData), NewData) colnames(NewData)[1] <- "ID" nb <- NaiveBayesModel(SplitRatio = 0.8, CV = 10, Threshold = 0.8, NCores = 1, NewData = NewData) ModelMetrics(Model = nb) NewDataPredictionResult(Model = nb)
This function has the following arguments:
SplitRatio
Train and test split ratio. A value greater or equal to zero and less than one.CV
The number of folds for cross-validation. It should be greater than one.Threshold
The threshold for deciding class probability. A value greater or equal to zero and less than one.NCores
The number of cores for parallel computing.NewData
A methylation beta values input from the ReadMethylFile function. The NeuralNetworkModel
is a function to train an artificial neural network model to classify medulloblastoma subgroups using DNA methylation beta values. Please uncomment the following lines and run the function. If it is the first time you run this function, set the InstallTensorFlow parameter to TRUE. It will automatically install the Python and TensorFlow library (version 2.10-cpu) in a virtual environment then set the parameter to FALSE.
# set.seed(1234) # fac <- ncol(Data1) # NewData <- sample(data.frame(t(Data1[,-fac])),10) # NewData <- cbind(rownames(NewData), NewData) # colnames(NewData)[1] <- "ID" # ann <- NeuralNetworkModel(Epochs = 100, # NewData = NewData, # InstallTensorFlow = TRUE) # ModelMetrics(Model = ann) # NewDataPredictionResult(Model = ann)
This function has the following arguments:
Epochs
The number of epochs.NewData
A methylation beta values input from the ReadMethylFile function.InstallTensorFlow
Logical. Running this function for the first time, you need to install TensorFlow library (V 2.10-cpu). Default is TRUE.Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.