MCCM_est | R Documentation |
Estimate the correlation matrix for dataframes containing continuous and ordinal variable, in pairs or simultaneously, using MLE, IRLS, or IGMM.
MCCM_est(
dataYX,
order_indx,
pair_est = FALSE,
MLE = FALSE,
R0 = NULL,
app = TRUE,
korder = 2,
max_iter = 1000,
max_tol = 1e-08,
show_log = FALSE
)
dataYX |
a dataframe or matrix containing both continuous and ordinal variables. |
order_indx |
a vector to indicate the ordinal variables. |
pair_est |
bool value, TRUE for pairwise estimation, FALSE for simultaneous estimation. |
MLE |
bool value, TRUE for maximum likelihood estimation, FALSE for IRLS (pairwise) or IGMM (simultaneous) estimation. |
R0 |
the initial value for correlation vector, default Pearson correlation matrix. |
app |
bool value for approximation, TRUE for Legendre approximation, FALSE for common integral. |
korder |
the order of Legendre approximation. |
max_iter |
max iteration number for IGMM. |
max_tol |
max tolerance for iteration algorithm. |
show_log |
bool value, TRUE for showing calculation log. |
Rmatrix |
Estimated mixed correlation coefficient matrix. |
std_matrix |
Estimated standard deviation for each mixed correlation coefficient. |
COV |
The covariance matrix for MCCM (simultaneous estimation only). |
esti_polyserial, esti_polychoric, est_mixedGMM, summary_MCCM_est, draw_correlation_matrix
library(mvtnorm)
library(MASS)
library(polycor)
library(lavaan)
set.seed(1997)
n = 10000
rho12=0.3
rho13=0.4
rho14=0.5
rho23=0.6
rho24=0.7
rho34=0.8
R = matrix(c(1,rho12,rho13,rho14,rho12,1,rho23,rho24,rho13,rho23,1,rho34,
rho14,rho24,rho34,1),4,4)
indc = c(3,4)
thresholds = list(c(),c(),0,0)
data1 = gen_mixed(n=n,R=R,indc=indc,thresholds=thresholds)
data2 = data.frame(data1$observed)
# pairwise MLE estimation
out_pair_MLE = MCCM_est(dataYX=data2,order_indx=indc,pair_est=TRUE,MLE=TRUE)
# pairwise IRLS estimation
out_pair_IRLS = MCCM_est(dataYX=data2,order_indx=indc,pair_est=TRUE,MLE=FALSE)
# simultaneous MLE estimation
out_sim_MLE = MCCM_est(dataYX=data2,order_indx=indc,pair_est=FALSE,MLE=TRUE)
# simultaneous IGMM estimation
out_sim_IGMM = MCCM_est(dataYX=data2,order_indx=indc,pair_est=FALSE,MLE=FALSE)
summary_MCCM_est(out_pair_MLE)
summary_MCCM_est(out_pair_IRLS)
summary_MCCM_est(out_sim_MLE)
summary_MCCM_est(out_sim_IGMM)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.