ComputePValue | R Documentation |
Compute p-values from information gains and return MDFS
ComputePValue(
IG,
dimensions,
divisions,
response.divisions = 1,
df = NULL,
contrast.mask = NULL,
ig.in.bits = TRUE,
ig.doubled = FALSE,
one.dim.mode = "exp",
irr.vars.num = NULL,
ign.low.ig.vars.num = NULL,
min.irr.vars.num = NULL,
max.ign.low.ig.vars.num = NULL,
search.points = 8,
level = 0.05
)
IG |
max conditional information gains |
dimensions |
number of dimensions |
divisions |
number of divisions |
response.divisions |
number of response divisions (i.e. categories-1) |
df |
vector of degrees of freedom for each variable (optional) |
contrast.mask |
boolean mask on |
ig.in.bits |
|
ig.doubled |
|
one.dim.mode |
|
irr.vars.num |
if not NULL, number of irrelevant variables, specified by the user |
ign.low.ig.vars.num |
if not NULL, number of ignored low IG variables, specified by the user |
min.irr.vars.num |
minimum number of irrelevant variables ( |
max.ign.low.ig.vars.num |
maximum number of ignored low IG variables ( |
search.points |
number of points in search procedure for the optimal number of ignored variables |
level |
acceptable error level of goodness-of-fit one-sample Kolmogorov-Smirnov test (used only for warning) |
A data.frame
with class set to MDFS
. Can be coerced back to data.frame
using as.data.frame
.
The following columns are present:
IG
– information gains (input copy)
chi.squared.p.value
– chi-squared p-values
p.value
– theoretical p-values
Additionally the following attributes
are set:
run.params
– run parameters
sq.dev
– vector of square deviations used to estimate the number of irrelevant variables
dist.param
– distribution parameter
err.param
– squared error of the distribution parameter
fit.p.value
– p-value of fit
ComputePValue(madelon$IG.2D, dimensions = 2, divisions = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.