Nothing
#' @keywords internal
#' @details MIAmaxent is intended primarily for maximum entropy
#' distribution modeling (Phillips et al., 2006; Phillips et al., 2017), and
#' provides an alternative to the standard methodology for training,
#' selecting, and using models. The major advantage in this alternative
#' methodology is greater user control -- in variable transformations, in
#' variable selection, and in model output. Comparisons also suggest that this
#' methodology results in simpler models with equally good predictive ability,
#' and reduces the risk of overfitting (Halvorsen et al., 2016).
#'
#' The predecessor to this package is the MIA Toolbox, which is described in
#' detail in Mazzoni et al. (2015).
#'
#' @section Workflow: The diagram below outlines a common workflow for users of
#' the package. Function names are in red.
#'
#' \if{html}{\figure{workflow-flowchart.png}{options: width="70\%"
#' alt="Figure: workflow-flowchart.png"}}
#' \if{latex}{\figure{workflow-flowchart.pdf}{options: width=12cm}}
#'
#' @references Fithian, W., & Hastie, T. (2013). Finite-sample equivalence in
#' statistical models for presence-only data. The annals of applied
#' statistics, 7(4), 1917.
#' @references Halvorsen, R., Mazzoni, S., Bryn, A. & Bakkestuen, V. (2015)
#' Opportunities for improved distribution modelling practice via a strict
#' maximum likelihood interpretation of MaxEnt. Ecography, 38, 172-183.
#' @references Halvorsen, R., Mazzoni, S., Dirksen, J.W., Næsset, E., Gobakken,
#' T. & Ohlson, M. (2016) How important are choice of model selection method
#' and spatial autocorrelation of presence data for distribution modelling by
#' MaxEnt? Ecological Modelling, 328, 108-118.
#' @references Mazzoni, S., Halvorsen, R. & Bakkestuen, V. (2015) MIAT: Modular
#' R-wrappers for flexible implementation of MaxEnt distribution modelling.
#' Ecological Informatics, 30, 215-221.
#' @references Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., &
#' Blair, M.E. (2017). Opening the black box: an open-source release of
#' Maxent. Ecography, 40(7), 887-893.
#' @references Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum
#' entropy modeling of species geographic distributions. Ecological Modelling,
#' 190, 231-259.
#' @references Vollering, J., Halvorsen, R., & Mazzoni, S. (2019) The MIAmaxent
#' R package: Variable transformation and model selection for species
#' distribution models. Ecology and Evolution, 9(21), 12051–12068.
"_PACKAGE"
## usethis namespace: start
## usethis namespace: end
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.