GFplot | R Documentation |
This function analyzes regression data graphically. It allows visualization of the usual F-test for significance of regression.
GFplot(X, y, plotIt=TRUE, sortTrt=FALSE, type="hist", includeIntercept=TRUE, labels=FALSE)
X |
The design matrix. |
y |
A numeric vector containing the response. |
plotIt |
Logical: if TRUE, a graph is drawn. |
sortTrt |
Logical: if TRUE, an attempt is made at sorting the predictor effects in descending order. |
type |
"QQ" or "hist" |
includeIntercept |
Logical: if TRUE, the intercept effect is plotted; otherwise, it is omitted from the plot. |
labels |
logical: if TRUE, names of predictor variables are used as labels; otherwise, the design matrix column numbers are used as labels |
A QQ-plot or a histogram and rugplot, or a list if plotIt=FALSE
W. John Braun
Braun, W.J. 2013. Regression Analysis and the QR Decomposition. Preprint.
# Example 1
X <- p4.18[,-4]
y <- p4.18[,4]
GFplot(X, y, type="hist", includeIntercept=FALSE)
title("Evidence of Regression in the Jojoba Oil Data")
# Example 2
set.seed(4571)
Z <- matrix(rnorm(400), ncol=10)
A <- matrix(rnorm(81), ncol=9)
simdata <- data.frame(Z[,1], crossprod(t(Z[,-1]),A))
names(simdata) <- c("y", paste("x", 1:9, sep=""))
GFplot(simdata[,-1], simdata[,1], type="hist", includeIntercept=FALSE)
title("Evidence of Regression in Simulated Data Set")
# Example 3
GFplot(table.b1[,-1], table.b1[,1], type="hist", includeIntercept=FALSE)
title("Evidence of Regression in NFL Data Set")
# An example where stepwise AIC selects the complement
# of the set of variables that are actually in the true model:
X <- pathoeg[,-10]
y <- pathoeg[,10]
par(mfrow=c(2,2))
GFplot(X, y)
GFplot(X, y, sortTrt=TRUE)
GFplot(X, y, type="QQ")
GFplot(X, y, sortTrt=TRUE, type="QQ")
X <- table.b1[,-1] # NFL data
y <- table.b1[,1]
GFplot(X, y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.