Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(RcppParallel)
RcppParallel::setThreadOptions(numThreads = 1)
## ----setup--------------------------------------------------------------------
library(MSCA)
library(dplyr)
data(EHR)
head(EHR)
EHR %>%
nrow()
## -----------------------------------------------------------------------------
EHR %>%
group_by( reg ) %>%
tally
## -----------------------------------------------------------------------------
s_mat <- make_state_matrices(
data = EHR,
id = "link_id",
ltc = "reg",
aos = "aos",
l = 111,
fail_code = "death",
cens_code = "cens"
)
dim( s_mat )
## -----------------------------------------------------------------------------
library( cluster )
library( fastcluster )
# Compute the jaccard distance
d_mat <- fast_jaccard_dist( s_mat , as.dist = TRUE )
# Get a hierachical clustering using the built in hclust function
h_mat <- hclust(d = d_mat , method = 'ward.D2' )
h_mat
# Get a typology
ct_mat_8 <- cutree( h_mat , k = 8 )
table( ct_mat_8 )
## -----------------------------------------------------------------------------
# Get a data frame with patient id and cluster assignation
df1 <- data.frame( link_id = names(ct_mat_8) , cl = paste0('cl_',ct_mat_8))
head(df1)
# Merge with primary data
EHR_cl <- EHR %>%
left_join( df1 )
# Get cluster sequences by cluster
dt_seq <- get_cluster_sequences(
dt = EHR_cl ,
cl_col = "cl",
id_col = "link_id",
event_col = "reg",
k = 2
)
# Get basic stats by cluster
sequence_stats(
seq_list = dt_seq$sequences ,
min_seq_freq = 0.03,
min_conditional_prob = 0,
min_relative_risk = 0
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.