Description Details Author(s) See Also Examples

Sampling and evaluation methods to apply Monetary Unit Sampling (or in older literature Dollar Unit Sampling) during an audit of financial statements.

Monetary Unit Sampling (MUS), also known as Dollar Unit Sampling (DUS) or Probability-Proportional-to-Size Sampling (PPS), is a sampling approach that is widely used in auditing.

This package was written mainly for a research project. However, it should be possible to use the methods for practical auditing, too. Furthermore, the package comes with ABSOLUTELY NO WARRANTY. Use it at your own risk!

You have to walk through four steps: 1. Plan a sample and determine the sample size, use function: MUS.planning 2. Extract the sample, use function: MUS.extract 3. Audit the extracted sample (e.g. by asking for debtor confirmations). 4. Evaluate the audited sample, use function: MUS.evaluation

Henning Prömpers, André Guimarães Maintainer: Henning Prömpers <henning@proempers.net>

`MUS.planning`

for planning a sample,
`MUS.extraction`

for extraction of the planned sample and
`MUS.evaluation`

for evaluation of the extracted and
audited sample.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ```
## Simple Example
library(MUS)
# Assume 500 invoices, each between 1 and 1000 monetary units
example.data.1 <- data.frame(book.value=round(runif(n=500, min=1,
max=1000)))
# Plan a sample and cache it
plan.results.simple <- MUS.planning(data=example.data.1,
tolerable.error=100000, expected.error=20000)
# Extract a sample and cache it (no high values exist in this example)
extract.results.simple <- MUS.extraction(plan.results.simple)
# Copy book values into a new column audit values
audited.sample.simple <- extract.results.simple$sample
audited.sample.simple <- cbind(audited.sample.simple,
audit.value=audited.sample.simple$book.value)
# Edit manually (if any audit difference occur)
#audited.sample.simple <- edit(audited.sample.simple)
# Evaluate the sample, cache and print it
evaluation.results.simple <- MUS.evaluation(extract.results.simple,
audited.sample.simple)
print(evaluation.results.simple)
``` |

```
MONETARY UNIT SAMPLING
The sample provides a reasonable basis to conclude that the population
is free of material misstatements (given the parameters below).
The conclusion is based on a calculated Upper Error Limit of 70234 for
overstatements and 70234 for understatements (please be aware that MUS
is not designed to detect understatements, thus they can only be used
as an indicator).
Most important parameters:
- Confidence Level: 0.95
- Tolerable Error (Materiality): 1e+05
- Population gross value: 248071
- Expected Error in population: 20000
- Sample size: 9
- Threshold for individual significant items: 27563
Projected Misstatement:
No misstatements found. Thus, the projected misstatememt is 0.
```

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.