MUS.binomial.bound: Calculate a binomial bound for a Monetary Unit Sampling...

Description Usage Arguments Value Author(s) See Also Examples

Description

Calculates a binomial bound for a Monetary Unit Sampling evaluation.

Please treat as experimental.

Usage

1
    MUS.binomial.bound(x, scope, as.pct, include.high.values, confidence.level)

Arguments

x

A MUS.evaluation.result object (or a tainting vector) used to calculate the binomial bound.

scope

The required scope for the bound ("qty" or "value"). Default is "value".

as.pct

Boolean. Express results as percentage. Default is False.

include.high.values

Boolean. Whether the bound should include high values. Default is "TRUE".

confidence.level

The required confidence level. Default is 95%.

Value

Upper Error Limit calculed using the binomial bound.

Author(s)

Andre Guimaraes <alsguimaraes@gmail.com>

See Also

MUS.evaluation for evaluation of the audited sample.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
# Assume 500 invoices, each between 1 and 1000 monetary units
data <- data.frame(book.value=round(runif(n=500, min=1, max=1000)))
# Plan a sample and cache it
plan <- MUS.planning(data=data, tolerable.error=10000, expected.error=2000)
# Extract a sample and cache it (no high values exist in this example)
extract <- MUS.extraction(plan)
# Copy book value into a new column audit values, and inject some error
audited <- extract$sample$book.value*(1-rbinom(nrow(extract$sample), 1, 0.05))
audited <- cbind(extract$sample, audit.value=audited)
# Evaluate the sample, cache and print it
evaluation <- MUS.evaluation(extract, audited)
MUS.binomial.bound(evaluation)

MUS documentation built on May 2, 2019, 12:36 p.m.