plot | R Documentation |
Plot measures of model performance and predictor variable importance.
## S3 method for class 'Calibration'
plot(x, type = c("line", "point"), se = FALSE, ...)
## S3 method for class 'ConfusionList'
plot(x, ...)
## S3 method for class 'ConfusionMatrix'
plot(x, ...)
## S3 method for class 'LiftCurve'
plot(
x,
find = numeric(),
diagonal = TRUE,
stat = MachineShop::settings("stat.Curve"),
...
)
## S3 method for class 'MLModel'
plot(
x,
metrics = NULL,
stat = MachineShop::settings("stat.TrainingParams"),
type = c("boxplot", "density", "errorbar", "line", "violin"),
...
)
## S3 method for class 'PartialDependence'
plot(x, stats = NULL, ...)
## S3 method for class 'Performance'
plot(
x,
metrics = NULL,
stat = MachineShop::settings("stat.Resample"),
type = c("boxplot", "density", "errorbar", "violin"),
...
)
## S3 method for class 'PerformanceCurve'
plot(
x,
type = c("tradeoffs", "cutoffs"),
diagonal = FALSE,
stat = MachineShop::settings("stat.Curve"),
...
)
## S3 method for class 'Resample'
plot(
x,
metrics = NULL,
stat = MachineShop::settings("stat.Resample"),
type = c("boxplot", "density", "errorbar", "violin"),
...
)
## S3 method for class 'TrainingStep'
plot(
x,
metrics = NULL,
stat = MachineShop::settings("stat.TrainingParams"),
type = c("boxplot", "density", "errorbar", "line", "violin"),
...
)
## S3 method for class 'VariableImportance'
plot(x, n = Inf, ...)
x |
calibration, confusion, lift, trained model fit, partial dependence, performance, performance curve, resample, rfe, or variable importance result. |
type |
type of plot to construct. |
se |
logical indicating whether to include standard error bars. |
... |
arguments passed to other methods. |
find |
numeric true positive rate at which to display reference lines identifying the corresponding rates of positive predictions. |
diagonal |
logical indicating whether to include a diagonal reference line. |
stat |
function or character string naming a function to compute a
summary statistic on resampled metrics for trained |
metrics |
vector of numeric indexes or character names of performance metrics to plot. |
stats |
vector of numeric indexes or character names of partial dependence summary statistics to plot. |
n |
number of most important variables to include in the plot. |
## Requires prior installation of suggested package gbm to run
## Factor response example
fo <- Species ~ .
control <- CVControl()
gbm_fit <- fit(fo, data = iris, model = GBMModel, control = control)
plot(varimp(gbm_fit))
gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)
plot(gbm_res3)
res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
plot(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.