Nothing
#' Models
#'
#' Model constructor functions supplied by \pkg{MachineShop} are summarized in
#' the table below according to the types of response variables with which each
#' can be used.
#' \tabular{lccc}{
#' \strong{Function} \tab \strong{Categorical} \tab \strong{Continuous}
#' \tab \strong{Survival} \cr
#' \code{\link{AdaBagModel}} \tab f \tab \tab \cr
#' \code{\link{AdaBoostModel}} \tab f \tab \tab \cr
#' \code{\link{BARTModel}} \tab f \tab n \tab S \cr
#' \code{\link{BARTMachineModel}} \tab b \tab n \tab \cr
#' \code{\link{BlackBoostModel}} \tab b \tab n \tab S \cr
#' \code{\link{C50Model}} \tab f \tab \tab \cr
#' \code{\link{CForestModel}} \tab f \tab n \tab S \cr
#' \code{\link{CoxModel}} \tab \tab \tab S \cr
#' \code{\link{CoxStepAICModel}} \tab \tab \tab S \cr
#' \code{\link{EarthModel}} \tab f \tab n \tab \cr
#' \code{\link{FDAModel}} \tab f \tab \tab \cr
#' \code{\link{GAMBoostModel}} \tab b \tab n \tab S \cr
#' \code{\link{GBMModel}} \tab f \tab n \tab S \cr
#' \code{\link{GLMBoostModel}} \tab b \tab n \tab S \cr
#' \code{\link{GLMModel}} \tab f \tab m,n \tab \cr
#' \code{\link{GLMStepAICModel}} \tab b \tab n \tab \cr
#' \code{\link{GLMNetModel}} \tab f \tab m,n \tab S \cr
#' \code{\link{KNNModel}} \tab f,o \tab n \tab \cr
#' \code{\link{LARSModel}} \tab \tab n \tab \cr
#' \code{\link{LDAModel}} \tab f \tab \tab \cr
#' \code{\link{LMModel}} \tab f \tab m,n \tab \cr
#' \code{\link{MDAModel}} \tab f \tab \tab \cr
#' \code{\link{NaiveBayesModel}} \tab f \tab \tab \cr
#' \code{\link{NNetModel}} \tab f \tab n \tab \cr
#' \code{\link{ParsnipModel}} \tab f \tab m,n \tab S \cr
#' \code{\link{PDAModel}} \tab f \tab \tab \cr
#' \code{\link{PLSModel}} \tab f \tab n \tab \cr
#' \code{\link{POLRModel}} \tab o \tab \tab \cr
#' \code{\link{QDAModel}} \tab f \tab \tab \cr
#' \code{\link{RandomForestModel}} \tab f \tab n \tab \cr
#' \code{\link{RangerModel}} \tab f \tab n \tab S \cr
#' \code{\link{RFSRCModel}} \tab f \tab m,n \tab S \cr
#' \code{\link{RFSRCFastModel}} \tab f \tab m,n \tab S \cr
#' \code{\link{RPartModel}} \tab f \tab n \tab S \cr
#' \code{\link{SurvRegModel}} \tab \tab \tab S \cr
#' \code{\link{SurvRegStepAICModel}} \tab \tab \tab S \cr
#' \code{\link{SVMModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMANOVAModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMBesselModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMLaplaceModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMLinearModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMPolyModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMRadialModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMSplineModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMTanhModel}} \tab f \tab n \tab \cr
#' \code{\link{TreeModel}} \tab f \tab n \tab \cr
#' \code{\link{XGBModel}} \tab f \tab n \tab S \cr
#' \code{\link{XGBDARTModel}} \tab f \tab n \tab S \cr
#' \code{\link{XGBLinearModel}} \tab f \tab n \tab S \cr
#' \code{\link{XGBTreeModel}} \tab f \tab n \tab S \cr
#' }
#' Categorical: b = binary, f = factor, o = ordered\cr
#' Continuous: m = matrix, n = numeric\cr
#' Survival: S = Surv\cr
#' \cr
#' Models may be combined, tuned, or selected with the following meta-model
#' functions.
#' \tabular{ll}{
#' \code{\link{ModelSpecification}} \tab Model specification \cr
#' \code{\link{StackedModel}} \tab Stacked regression \cr
#' \code{\link{SuperModel}} \tab Super learner \cr
#' \code{\link{SelectedModel}} \tab Model selection from a candidate set \cr
#' \code{\link{TunedModel}} \tab Model tuning over a parameter grid \cr
#' }
#'
#' @name models
#'
#' @seealso \code{\link{modelinfo}}, \code{\link{fit}}, \code{\link{resample}}
#'
NULL
#' Model Inputs
#'
#' Model inputs are the predictor and response variables whose relationship is
#' determined by a model fit. Input specifications supported by
#' \pkg{MachineShop} are summarized in the table below.
#' \tabular{ll}{
#' \code{\link{formula}} \tab Traditional model formula \cr
#' \code{\link{matrix}} \tab Design matrix of predictors \cr
#' \code{\link{ModelFrame}} \tab Model frame \cr
#' \code{\link{ModelSpecification}} \tab Model specification \cr
#' \code{\link[recipes]{recipe}} \tab Preprocessing recipe roles and steps \cr
#' }
#' Response variable types in the input specifications are defined by the user
#' with the functions and recipe roles:
#' \tabular{ll}{
#' \strong{Response Functions}
#' \tab \code{\link{BinomialVariate}} \cr
#' \tab \code{\link{DiscreteVariate}} \cr
#' \tab \code{\link{factor}} \cr
#' \tab \code{\link{matrix}} \cr
#' \tab \code{\link{NegBinomialVariate}} \cr
#' \tab \code{\link{numeric}} \cr
#' \tab \code{\link{ordered}} \cr
#' \tab \code{\link{PoissonVariate}} \cr
#' \tab \code{\link[survival]{Surv}} \cr
#' \strong{Recipe Roles}
#' \tab \code{\link{role_binom}} \cr
#' \tab \code{\link{role_surv}} \cr
#' }
#' Inputs may be combined, selected, or tuned with the following meta-input
#' functions.
#' \tabular{ll}{
#' \code{\link{ModelSpecification}} \tab Model specification \cr
#' \code{\link{SelectedInput}} \tab Input selection from a candidate set \cr
#' \code{\link{TunedInput}} \tab Input tuning over a parameter grid \cr
#' }
#'
#' @name inputs
#'
#' @seealso \code{\link{fit}}, \code{\link{resample}}
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.