Nothing
#' Predict new data with a trained learner.
#' @param data A dataframe.
#' @param result The result object from a previous training.
#' @param ifnet A boolean indicating if a neural network is used for prediction.
#' @importFrom dplyr rename mutate across select bind_cols
#' @importFrom tidyselect everything
#' @importFrom data.table as.data.table
#' @return A data frame that contains features and 'predict' class.
#' @export
mi_predict_new <- function(data, result,ifnet = F) {
#If data obtained by a deep learning model exists.
if(ifnet){
#select model.
learner_BP = result[[1]]
#Predict model.
predictions <- predict(learner_BP, as.matrix(data))
#Return the index of the maximum value.
response <- predictions %>% k_argmax()
#Create multi-dimensional arrays and convert them to numeric types.
response <- response$numpy() %>%
as.numeric(.)
#select levels.
level_ <- result[[3]]
#Modify level and convert to factor type.
response <- level_[response + 1] %>% factor(level_)
#Return a data frame that contains features and 'predict' class.
return(data %>% mutate("response" = response))
#If data obtained by a deep learning model does not exist.
}else{
#select model.
learner = result[[1]]
#Predict model.
data %>%
mutate(across(.cols = everything(), .fns = as.numeric)) %>%
learner$predict_newdata(newdata = ., task = NULL) # %>%
#get a data frame that contains features and 'predict' class.
as.data.table() %>%
bind_cols(data, .) %>%
select(-"truth") %>%
select("response", everything()) %>%
rename("response" = learner$id)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.