MatManly.init: Initialization for the EM algorithm for matrix clustering

Description Usage Arguments Details

View source: R/libMatManlyFull.R

Description

Runs the initialization for the EM algorithm for matrix clustering

Usage

1
2
MatManly.init(Y, X = NULL, K, la = NULL, nu = NULL, Mu.type = 0, 
Psi.type = 0, n.start = 10, tol = 1e-05)

Arguments

Y

dataset of random matrices (p x T x n), n random matrices of dimensionality (p x T)

X

dataset of explanatory variables (T x q x n), q explanatory variables for modeling Y

K

number of clusters

la

initial transformation parameters (K x p)

nu

initial transformation parameters (K x T)

Mu.type

mean structure: 0-unrestricted, 1-additive

Psi.type

covariance structure of the Psi matrix: 0-unrestricted, 1-AR1

n.start

initial random starts

tol

tolerance level

Details

Random starts are used to obtain different starting values. The number of clusters, the skewness parameters, and number of random starts need to be specified. In the case when transformation parameters are not provided, the function runs the EM algorithm without any transformations, i.e., it is equivalent to the EM algorithm for a matrix Gaussian mixture. Notation: n - sample size, p x T - dimensionality of the random matrices, K - number of mixture components.


MatManlyMix documentation built on May 2, 2019, 5:58 a.m.