simulatedifm | R Documentation |
This dataset loads several objects:
'sim.area', 'sim.det.20', 'sim.distance', 'z.sim', 'z.sim.20' and 'z.sim.20.fa'.
sim.area
Vector of the areas for each site; here, 100 sites.
sim.det.20
100 x 10 x 3 array corresponding to nsites x nyears x nvisits. Data simulated with year-specific detection probabilities equal to 0.4,0.6,0.2,0.9,0.3,0.4,0.6,0.2,0.9,0.3.
sim.distance
nsite x nsite distance matrix.
z.sim
nyear x nsite occupancy data generated with perfect detection.
z.sim.20
nyear x nsite occupancy data generated with perfect detection with approximately 20% of data missing at random.
z.sim.20.fa
nyear x nsite occupancy data containing false absences, which can be used to explore the bias of ifm.missing.MCMC and ifm.naive.MCMC when there is imperfect detection.
These datasets were created using the code included in Examples.
## Not run: ############################################## # Areas for 100 hundred sites were created from a log normal distribution with mean # and variance equal to the mean and variance of the area of the sites in the # Sierra Foothills black rail population. # Universal Transverse Mercator locations (UTMs) for each site were # simulated from the mean and variance of the UTM Northing and Easting # # Dynamics were simulated for 1000 years. The parameters were chosen such that the metapopulation # persisted with reasonable turnover. The last 10 years of these data were retained. # For the detection data sets, we simulated a removal design based on three visits. #------------------- # IFM SIMULATE #------------------ set.seed(123) #------- #AREAS #------- mean.log.area=-0.75 sd.log.area=1.33 nsite=100 log.sim.area=rnorm(nsite,mean.log.area,sd.log.area) sim.area = exp(log.sim.area) #--------- #DISTANCE #-------- sim.site.x=rnorm(nsite,643930,9000) sim.site.y=rnorm(nsite,4340500,10500) sim.site.x.mat.col=matrix(rep(sim.site.x,nsite),ncol=nsite,byrow=TRUE) sim.site.x.mat.row=matrix(rep(sim.site.x,nsite),ncol=nsite) sim.site.delta.x=(sim.site.x.mat.col-sim.site.x.mat.row)^2 sim.site.y.mat.col=matrix(rep(sim.site.y,nsite),ncol=nsite,byrow=TRUE) sim.site.y.mat.row=matrix(rep(sim.site.y,nsite),ncol=nsite) sim.site.delta.y=(sim.site.y.mat.col-sim.site.y.mat.row)^2 # scale distance so that alpha = 2 is reasonable: sim.distance=((sim.site.delta.x+sim.site.delta.y)^0.5)/100000 diag(sim.distance)=99 #-------------# # CREATE SPOM # #-------------# spom=function(nsite,nyear.sim,alpha,b,y,e,x) { psi=matrix(rep(NA,nsite*nyear.sim),ncol=nyear.sim) psi1=rbinom(nsite,1,0.8) psi[,1]=psi1 s.i.temp=exp(-alpha*sim.distance) s.i.temp[s.i.temp==1]=0 e.i=e/sim.area^x e.i[e.i>1]=1 for (i in 2:nyear.sim) { s.i=s.i.temp c.i=s.i^2/(s.i^2+y^2) e.i.re=e.i*(1-c.i) mu1=psi[,i-1]*(1-e.i.re)+(1-psi[,i-1])*c.i psi.temp=rbinom(nsite,1,mu1) psi[,i]=psi.temp } psi } #--------------- # SIMULATE IFM #--------------- nyear.sim=1000 psi.sim=spom(nsite,nyear.sim,alpha=20,b=0.5,y=7.5,e=0.25,x=0.25) nyear=10 # Data from this dataset conforms to the assumptions of IFM Naive: z.sim=psi.sim[,(nyear.sim+1-nyear):nyear.sim] apply(z.sim,2,mean) #CREATE DETECTION HISTORY p=rep(c(0.4,0.6,0.2,0.9,0.3),2) nrep=3 temp=rep(1,nrep*nsite*nyear) p.mat=matrix(rep(p,nsite),nrow=nsite,byrow=TRUE) temp.z.sim=z.sim*p.mat sim.det=rbinom(temp,1,temp.z.sim) dim(sim.det)=c(nsite,nyear,nrep) #ENFORCE REMOVAL DESIGN for (i in 1:nsite) { for(t in 1:nyear) { if (sim.det[i,t,1]==1) sim.det[i,t,2]=2 if (sim.det[i,t,1]==1) sim.det[i,t,3]=2 if (sim.det[i,t,2]==1) sim.det[i,t,3]=2 } } sim.det[sim.det==2]=NA sim.det.no.missing.values=sim.det #RANDOMLY CREATE MISSING DATA; 20 # Data are missing when a site was never visited in a given year unif.mat=runif(nyear*nsite) z.sim.20=z.sim z.sim.20[unif.mat<0.2]=NA sim.det.20=sim.det sim.det.20[rep(is.na(z.sim.20),nrep)]=NA #CREATE DATASET WITH MISSING VALUES AND FALSE ABSENCES #THIS IS TO CHECK HOW IFM.NAIVE AND IFM.MISSING # LEAD TO BIASES z.sim.20.fa = apply(sim.det.20,c(1,2),sum,na.rm=TRUE) z.sim.20.fa[unif.mat<0.20]=NA # z.sim: Perfect detection, one visit per year. # z.sim.20: Perfect detection, but 20 # z.sim.20.fa: 20 # then collapsed to a single observation per year equal to one if a detection occurred. # sim.det.20: 20 # The data are arranged in a 3-d array sites x years x visits save(z.sim,z.sim.20,z.sim.20.fa,sim.det. 20,sim.distance,sim.area,file=paste("SIMULATE_DATA_MDL_CMP",nsite,"_",nyear, "_",nrep,".RData",sep="")) ## End(Not run) data(simulatedifm) ls()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.