MetaculR_probabilistic_consensus | R Documentation |
Generate probabilistic consensus from multiple parameterized forecasts
MetaculR_probabilistic_consensus(f)
f |
A list of forecasts (see example for necessary structure). |
A list of forecasts.
pdf |
A dataframe of probability density functions corresponding to original forecasts and consensus forecast. |
cdf |
A dataframe of cumulative distribution functions corresponding to original forecasts and consensus forecast. |
summary |
A dataframe of summary statistics corresponding to original forecasts and consensus forecast, i.e., 10th, 25th, 50th, 75th, 90th centiles and mean. |
McAndrew, T., & Reich, N. G. (2020). An expert judgment model to predict early stages of the COVID-19 outbreak in the United States [Preprint]. Infectious Diseases (except HIV/AIDS). https://doi.org/10.1101/2020.09.21.20196725
## Not run: forecasts <- list(list(range = c(0, 250), resolution = 1), list(source = "Pishkalo", dist = "Norm", params = c("mu", "sd"), values = c(116, 12), weight = 0.2), list(source = "Miao", dist = "Norm", params = c("mu", "sd"), values = c(121.5, 32.9)), list(source = "Labonville", dist = "TPD", params = c("min", "mode", "max"), values = c(89-14, 89, 89+29)), list(source = "NOAA", dist = "PCT", params = c(0.2, 0.8), values = c(95, 130)), list(source = "Han", dist = "Norm", params = c("mu", "sd"), values = c(228, 40.5)), list(source = "Dani", dist = "Norm", params = c("mu", "sd"), values = c(159, 22.3)), list(source = "Li", dist = "Norm", params = c("mu", "sd"), values = c(168, 6.3)), list(source = "Singh", dist = "Norm", params = c("mu", "sd"), values = c(89, 9))) MetaculR_probabilistic_consensus( f = forecasts) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.