overlap | R Documentation |
Computes misclassification probabilities and pairwise overlaps for finite mixture models with Gaussian components. Overlap is defined as sum of two misclassification probabilities.
overlap(Pi, Mu, S, eps = 1e-06, lim = 1e06)
Pi |
vector of mixing proprtions (length K). |
Mu |
matrix consisting of components' mean vectors (K * p). |
S |
set of components' covariance matrices (p * p * K). |
eps |
error bound for overlap computation. |
lim |
maximum number of integration terms (Davies, 1980). |
OmegaMap |
matrix of misclassification probabilities (K * K); OmegaMap[i,j] is the probability that X coming from the i-th component is classified to the j-th component. |
BarOmega |
value of average overlap. |
MaxOmega |
value of maximum overlap. |
rcMax |
row and column numbers for the pair of components producing maximum overlap 'MaxOmega'. |
Volodymyr Melnykov, Wei-Chen Chen, and Ranjan Maitra.
Maitra, R. and Melnykov, V. (2010) “Simulating data to study performance of finite mixture modeling and clustering algorithms”, The Journal of Computational and Graphical Statistics, 2:19, 354-376.
Melnykov, V., Chen, W.-C., and Maitra, R. (2012) “MixSim: An R Package for Simulating Data to Study Performance of Clustering Algorithms”, Journal of Statistical Software, 51:12, 1-25.
Davies, R. (1980) “The distribution of a linear combination of chi-square random variables”, Applied Statistics, 29, 323-333.
MixSim
, pdplot
, and simdataset
.
data("iris", package = "datasets")
p <- ncol(iris) - 1
id <- as.integer(iris[, 5])
K <- max(id)
# estimate mixture parameters
Pi <- prop.table(tabulate(id))
Mu <- t(sapply(1:K, function(k){ colMeans(iris[id == k, -5]) }))
S <- sapply(1:K, function(k){ var(iris[id == k, -5]) })
dim(S) <- c(p, p, K)
overlap(Pi = Pi, Mu = Mu, S = S)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.