pdplot: Parallel Distribution Plot

Description Usage Arguments Details Author(s) References See Also Examples

View source: R/libGraphics.R

Description

Constructs a parallel distribution plot for Gaussian finite mixture models.

Usage

1
pdplot(Pi, Mu, S, file = NULL, Nx = 5, Ny = 5, MaxInt = 1, marg = c(2,1,1,1))

Arguments

Pi

vector of mixing proportions.

Mu

matrix consisting of components' mean vectors (K * p).

S

set of components' covariance matrices (p * p * K).

file

name of .pdf-file.

Nx

number of color levels for smoothing along the x-axis.

Ny

number of color levels for smoothing along the y-axis.

MaxInt

maximum color intensity.

marg

plot margins.

Details

If 'file' is specified, produced plot will be saved as a .pdf-file.

Author(s)

Volodymyr Melnykov, Wei-Chen Chen, and Ranjan Maitra.

References

Maitra, R. and Melnykov, V. (2010) “Simulating data to study performance of finite mixture modeling and clustering algorithms”, The Journal of Computational and Graphical Statistics, 2:19, 354-376.

Melnykov, V., Chen, W.-C., and Maitra, R. (2012) “MixSim: An R Package for Simulating Data to Study Performance of Clustering Algorithms”, Journal of Statistical Software, 51:12, 1-25.

See Also

MixSim, overlap, and simdataset.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
data("iris", package = "datasets")
p <- ncol(iris) - 1
id <- as.integer(iris[, 5])
K <- max(id)

# estimate mixture parameters
Pi <- prop.table(tabulate(id))
Mu <- t(sapply(1:K, function(k){ colMeans(iris[id == k, -5]) }))
S <- sapply(1:K, function(k){ var(iris[id == k, -5]) })
dim(S) <- c(p, p, K)

pdplot(Pi = Pi, Mu = Mu, S = S)

MixSim documentation built on March 16, 2021, 5:08 p.m.

Related to pdplot in MixSim...