View source: R/BinaryLogisticBiplot.R
BinaryLogisticBiplot | R Documentation |
Fits a binary lo gistic biplot to a binary data matrix.
BinaryLogisticBiplot(x, dim = 2, compress = FALSE, init = "mca",
method = "EM", rotation = "none", tol = 1e-04,
maxiter = 100, penalization = 0.2, similarity = "Simple_Matching", ...)
x |
The binary data matrix |
dim |
Dimension of the solution |
compress |
Compress the data before the fitting (not yet implemented) |
init |
Type of initial configuration. ("random", "mirt", "PCoA", "mca") |
method |
Method to fit the logistic biplot ("EM", "Joint", "mirt", "JointGD", "AlternatedGD", "External", "Recursive") |
rotation |
Rotation of the solution ("none", "oblimin", "quartimin", "oblimax" ,"entropy", "quartimax", "varimax", "simplimax" ) see GPARotation |
tol |
Tolerance for the algorithm |
maxiter |
Maximum number of iterations. |
penalization |
Panalization for the different algorithms |
similarity |
Similarity coefficient for the initial configuration or the external model |
... |
Any other argument for each particular method. |
Fits a binary lo gistic biplot to a binary data matrix.
Different Initial configurations can be selected:
1.- random : Random coordinates for each point.
2.- mirt: scores of the procedure mirt (Multidimensional Item Response Theory)
3.- PCoA: Principal Coordinates Analysis
4.- mca: Multiple Correspondence Analysis
We can use also different methods for the estimation
1.- Joint: Joint estimation of the row and column parameters. The Initial alorithm.
2.- EM: Marginal Maximum Likelihood
3.- mirt: Similar to the previous but fitted using the package mirt.
4.- JointGD: Joint estimation of the row and column methods using the gradient descent method.
5.- AlternatedGD: Alternated estimation of the row and column methods using the gradient descent method.
6.- External: Logistic fits on the Principal Coordinates Analysis.
7.- Recursive: Recursive (one axis at a time) estimation of the row and column methods using the gradient descent method. This is similar to the NIPALS algorithm for PCA
A Logistic Biplot object.
Jose Luis Vicente Villardon
Vicente-Villardon, J. L., Galindo, M. P. and Blazquez, A. (2006) Logistic Biplots. In Multiple Correspondence AnĂ¡lisis And Related Methods. Grenacre, M & Blasius, J, Eds, Chapman and Hall, Boca Raton.
Demey, J., Vicente-Villardon, J. L., Galindo, M.P. AND Zambrano, A. (2008) Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics, 24(24): 2832-2838.
BinaryLogBiplotJoint
, BinaryLogBiplotEM
, BinaryLogBiplotGD
, BinaryLogBiplotMirt
,
# data(spiders)
# X=Dataframe2BinaryMatrix(spiders)
# logbip=BinaryLogBiplotGD(X,penalization=0.1)
# plot(logbip, Mode="a")
# summary(logbip)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.