BinaryLogisticBiplot: Binary Logistic Biplot

View source: R/BinaryLogisticBiplot.R

BinaryLogisticBiplotR Documentation

Binary Logistic Biplot

Description

Fits a binary lo gistic biplot to a binary data matrix.

Usage

BinaryLogisticBiplot(x, dim = 2, compress = FALSE, init = "mca", 
method = "EM", rotation = "none", tol = 1e-04, 
maxiter = 100, penalization = 0.2, similarity = "Simple_Matching", ...)

Arguments

x

The binary data matrix

dim

Dimension of the solution

compress

Compress the data before the fitting (not yet implemented)

init

Type of initial configuration. ("random", "mirt", "PCoA", "mca")

method

Method to fit the logistic biplot ("EM", "Joint", "mirt", "JointGD", "AlternatedGD", "External", "Recursive")

rotation

Rotation of the solution ("none", "oblimin", "quartimin", "oblimax" ,"entropy", "quartimax", "varimax", "simplimax" ) see GPARotation

tol

Tolerance for the algorithm

maxiter

Maximum number of iterations.

penalization

Panalization for the different algorithms

similarity

Similarity coefficient for the initial configuration or the external model

...

Any other argument for each particular method.

Details

Fits a binary lo gistic biplot to a binary data matrix.

Different Initial configurations can be selected:

1.- random : Random coordinates for each point.

2.- mirt: scores of the procedure mirt (Multidimensional Item Response Theory)

3.- PCoA: Principal Coordinates Analysis

4.- mca: Multiple Correspondence Analysis

We can use also different methods for the estimation

1.- Joint: Joint estimation of the row and column parameters. The Initial alorithm.

2.- EM: Marginal Maximum Likelihood

3.- mirt: Similar to the previous but fitted using the package mirt.

4.- JointGD: Joint estimation of the row and column methods using the gradient descent method.

5.- AlternatedGD: Alternated estimation of the row and column methods using the gradient descent method.

6.- External: Logistic fits on the Principal Coordinates Analysis.

7.- Recursive: Recursive (one axis at a time) estimation of the row and column methods using the gradient descent method. This is similar to the NIPALS algorithm for PCA

Value

A Logistic Biplot object.

Author(s)

Jose Luis Vicente Villardon

References

Vicente-Villardon, J. L., Galindo, M. P. and Blazquez, A. (2006) Logistic Biplots. In Multiple Correspondence AnĂ¡lisis And Related Methods. Grenacre, M & Blasius, J, Eds, Chapman and Hall, Boca Raton.

Demey, J., Vicente-Villardon, J. L., Galindo, M.P. AND Zambrano, A. (2008) Identifying Molecular Markers Associated With Classification Of Genotypes Using External Logistic Biplots. Bioinformatics, 24(24): 2832-2838.

See Also

BinaryLogBiplotJoint, BinaryLogBiplotEM, BinaryLogBiplotGD, BinaryLogBiplotMirt,

Examples

# data(spiders)
# X=Dataframe2BinaryMatrix(spiders)

# logbip=BinaryLogBiplotGD(X,penalization=0.1)
# plot(logbip, Mode="a")
# summary(logbip)


MultBiplotR documentation built on Nov. 21, 2023, 5:08 p.m.