vignettes/SIR-MCMC.md

title: "Simple MCMC under SIR" author: "Lam ST Ho and Marc A Suchard" date: "2016-03-18" output: rmarkdown::pdf_document vignette: > %\VignetteIndexEntry{Simple_SIR_MCMC} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8}

We describe how to set-up and run a simple Metropolis-Hastings-based Markov chain Monte Carlo (MCMC) sampler under the susceptible-infected-removed (SIR) model.

library(MultiBD)

This example uses the Eyam data that consist the population counts of susceptible, infected and removed individuals across several time points.

data(Eyam)
Eyam
##   time   S  I   R
## 1  0.0 254  7   0
## 2  0.5 235 14  12
## 3  1.0 201 22  38
## 4  1.5 153 29  79
## 5  2.0 121 20 120
## 6  2.5 110  8 143
## 7  3.0  97  8 156
## 8  4.0  83  0 178

The log likelihood function is the sum of the log of the transition probabilities between two consecutive observations. Note that, we will use $(\log \alpha, \log \beta)$ as parameters instead of $(\alpha, \beta)$. The rows and columns of the transition probability matrix returned by dbd_prob() correspond to possible values of $S$ (from $a$ to $a0$) and $I$ (from $0$ to $B$) respectively.

loglik_sir <- function(param, data) {
  alpha <- exp(param[1]) # Rates must be non-negative
  beta  <- exp(param[2])

  # Set-up SIR model
  drates1 <- function(a, b) { 0 }
  brates2 <- function(a, b) { 0 }
  drates2 <- function(a, b) { alpha * b     }
  trans12 <- function(a, b) { beta  * a * b }

  sum(sapply(1:(nrow(data) - 1), # Sum across all time steps k
             function(k) {
               log(
                 dbd_prob(  # Compute the transition probability matrix
                   t  = data$time[k + 1] - data$time[k], # Time increment
                   a0 = data$S[k], b0 = data$I[k],       # From: S(t_k), I(t_k)                                      
                   drates1, brates2, drates2, trans12,
                   a = data$S[k + 1], B = data$S[k] + data$I[k] - data$S[k + 1],
                   computeMode = 4, nblocks = 80         # Compute using 4 threads
                 )[1, data$I[k + 1] + 1]                 # To: S(t_(k+1)), I(t_(k+1))
               )
             }))
}

Here, we choose $\text{Normal}(0, 100^2)$ as the prior for both $\log \alpha$ and $\log \beta$.

logprior <- function(param) {
  log_alpha <- param[1]
  log_beta <- param[2]

  dnorm(log_alpha, mean = 0, sd = 100, log = TRUE) +
    dnorm(log_beta, mean = 0, sd = 100, log = TRUE)
}

We will use the random walk Metropolis algorithm implemented in the function MCMCmetrop1R() (MCMCpack package) to explore the posterior distribution. So, we first need to install the package and its dependencies.

source("http://bioconductor.org/biocLite.R")
biocLite("graph")
biocLite("Rgraphviz")
install.packages("MCMCpack", repos = 'http://cran.us.r-project.org')
library(MCMCpack)

The starting point of our Markov chain is the estimated value of $(\alpha, \beta)$ from Raggett (1982).

alpha0 <- 3.39
beta0  <- 0.0212

We discard the first $200$ iterations and keep the next $1000$ iterations of the chain.

post_sample <- MCMCmetrop1R(fun = function(param) { loglik_sir(param, Eyam) + logprior(param) },
                           theta.init = log(c(alpha0, beta0)),
                           mcmc = 1000, burnin = 200)

The trace plots of both $\log \alpha$ and $\log \beta$ look good.

plot(as.vector(post_sample[,1]), type = "l", xlab = "Iteration", ylab = expression(log(alpha)))

plot of chunk unnamed-chunk-6

plot(as.vector(post_sample[,2]), type = "l", xlab = "Iteration", ylab = expression(log(beta)))

plot of chunk unnamed-chunk-6

We can visualize the joint posterior distribution of $\log \alpha$ and $\log \beta$ using the ggplot2 package.

library(ggplot2)
x = as.vector(post_sample[,1])
y = as.vector(post_sample[,2])
df <- data.frame(x, y)
ggplot(df,aes(x = x,y = y)) +
  stat_density2d(aes(fill = ..level..), geom = "polygon", h = 0.26) + 
  scale_fill_gradient(low = "grey85", high = "grey35", guide = FALSE) +
  xlab(expression(log(alpha))) +
  ylab(expression(log(beta)))

plot of chunk plot

We can also construct the $95\%$ Bayesian credible intervals for $\alpha$ and $\beta$.

quantile(exp(post_sample[,1]), probs = c(0.025,0.975))
##     2.5%    97.5% 
## 2.721921 3.809780
quantile(exp(post_sample[,2]), probs = c(0.025,0.975))
##       2.5%      97.5% 
## 0.01649866 0.02327176


Try the MultiBD package in your browser

Any scripts or data that you put into this service are public.

MultiBD documentation built on May 2, 2019, 11:50 a.m.