# Bias: Estimates bias for n number of multi-level random regression... In MultiRR: Bias, Precision, and Power for Multi-Level Random Regressions

## Description

Calculates bias for an object created with anal.MultiRR.

## Usage

 `1` ```Bias(x) ```

## Arguments

 `x` Object created with Anal.MultiRR.

## Value

A list of data frames with the bias and relative bias for all the estimated variance components and repeatabilities.

Yimen Araya

## References

Araya-Ajoy Y.G., Mathot, K. J., Dingemanse N. J. (2015) An approach to estimate short-term, long-term, and reaction norm repeatability. Methods in Ecology and Evolution.

`Sim.MultiRR`, `Anal.MultiRR`
 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44``` ```#Example 1: Balanced sampling design. #Define sample sizes. n.ind <-c(40, 50) ##Numbers of individuals to simulate. SeriesPerInd <- c(4, 5) ##Number of series per individual to simulate. ObsPerLevel <- 2 ##Number of observations per level in the environmental gradient. #Number of simulated data sets, use at least 10. n.sim=3 #Define the environmetal gradient. EnvGradient <- c(-0.5, 0.5) #Define the population level parameters. PopInt <- 0 ##Population level intercept. PopSlope <- -0.5 ##Population level slope. #Define individual level parameters VCVInd <-matrix(c(0.3, 0.15, 0.15, 0.3),2,2) ##Creates a variance-covariance matrix. #Define series level parameters VCVSeries <-matrix(c(0.3, 0.15, 0.15, 0.3),2,2) ##Creates a variance-covariance matrix. #Define the residual variance. ResVar <- 0.4 #Simulate the data sets. sim.data <- Sim.MultiRR(n.ind=n.ind, SeriesPerInd=SeriesPerInd, ObsPerLevel=ObsPerLevel, EnvGradient=EnvGradient, PopInt=PopInt, PopSlope=PopSlope, VCVInd=VCVInd, VCVSeries=VCVSeries, ResVar=ResVar, n.sim=3) #Analyze the simulated data sets. This may take a while. ressim <- Anal.MultiRR(sim.data) #Summarize the results of the multi-level random regressions. Summary(ressim) #Estimate bias. Bias(ressim) #Estiamte imprecision. Imprecision(ressim) #Estimate power. Power(ressim) ```