PipeOpVIM_IRMI | R Documentation |
Implements IRMI methods as mlr3 pipeline, more about VIM_IRMI autotune_VIM_Irmi
.
Input and output channels are inherited from PipeOpImpute
.
The parameters include inherited from ['PipeOpImpute'], as well as:
id
:: character(1)
Identifier of resulting object, default "imput_VIM_IRMI"
.
eps
:: double(1)
Threshold for convergence, default 5
.
maxit
:: integer(1)
Maximum number of iterations, default 100
step
:: logical(1)
Stepwise model selection is applied when the parameter is set to TRUE, default FALSE
.
robust
:: logical(1)
If TRUE, robust regression methods will be applied (it's impossible to set step=TRUE and robust=TRUE at the same time), default FALSE
.
init.method
:: character(1)
Method for initialization of missing values (kNN or median), default 'kNN'
.
force
:: logical(1)
If TRUE, the algorithm tries to find a solution in any case by using different robust methods automatically (should be set FALSE for simulation), default FALSE
.
out_fill
:: character(1)
Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL
.
mlr3pipelines::PipeOp
-> mlr3pipelines::PipeOpImpute
-> VIM_IRMI_imputation
new()
PipeOpVIM_IRMI$new( id = "impute_VIM_IRMI_B", eps = 5, maxit = 100, step = FALSE, robust = FALSE, init.method = "kNN", force = FALSE, out_file = NULL )
clone()
The objects of this class are cloneable with this method.
PipeOpVIM_IRMI$clone(deep = FALSE)
deep
Whether to make a deep clone.
graph <- PipeOpVIM_IRMI$new() %>>% mlr3learners::LearnerClassifGlmnet$new() graph_learner <- GraphLearner$new(graph) # Task with NA resample(TaskClassif$new('id',tsk('pima')$data(rows=1:100), 'diabetes'), graph_learner, rsmp("cv",folds=2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.