PipeOpmissRanger | R Documentation |
Implements missRanger methods as mlr3 pipeline, more about missRanger autotune_missRanger
.
Input and output channels are inherited from PipeOpImpute
.
The parameters include inherited from ['PipeOpImpute'], as well as:
id
:: character(1)
Identifier of resulting object, default "imput_missRanger"
.
mtry
:: integer(1)
Sample fraction used by missRanger. This param isn't optimized automatically. If NULL default value from ranger package will be used, NULL
.
num.trees
:: integer(1)
Number of trees. If optimize == TRUE. Param set seq(10,num.trees,iter) will be used, default 500
pmm.k
:: integer(1)
Number of candidate non-missing values to sample from in the predictive mean matching step. 0 to avoid this step. If optimize=TRUE params set: sample(1:pmm.k, iter) will be used. If pmm.k=0, missRanger is the same as missForest, default 5
.
random.seed
:: integer(1)
Random seed, default 123
.
iter
:: integer(1)
Number of iterations for a random search, default 10
.
optimize
:: logical(1)
If set TRUE, function will optimize parameters of imputation automatically. If parameters will be tuned by other method, should be set to FALSE, default FALSE
.
out_fill
:: character(1)
Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL
.
mlr3pipelines::PipeOp
-> mlr3pipelines::PipeOpImpute
-> missRanger_imputation
new()
PipeOpmissRanger$new( id = "impute_missRanger_B", maxiter = 10, random.seed = 123, mtry = NULL, num.trees = 500, pmm.k = 5, optimize = FALSE, iter = 10, out_file = NULL )
clone()
The objects of this class are cloneable with this method.
PipeOpmissRanger$clone(deep = FALSE)
deep
Whether to make a deep clone.
# Using debug learner for example purpose graph <- PipeOpmissRanger$new() %>>% LearnerClassifDebug$new() graph_learner <- GraphLearner$new(graph) # Task with NA resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.