DPMGibbsSkewN: Slice Sampling of Dirichlet Process Mixture of skew normal...

Description Usage Arguments Value Author(s) References Examples

Description

Slice Sampling of Dirichlet Process Mixture of skew normal distributions

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
DPMGibbsSkewN(
  z,
  hyperG0,
  a = 1e-04,
  b = 1e-04,
  N,
  doPlot = TRUE,
  nbclust_init = 30,
  plotevery = N/10,
  diagVar = TRUE,
  use_variance_hyperprior = TRUE,
  verbose = TRUE,
  ...
)

Arguments

z

data matrix d x n with d dimensions in rows and n observations in columns.

hyperG0

prior mixing distribution.

a

shape hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001.

b

scale hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001. If 0, then the concentration is fixed set to a.

N

number of MCMC iterations.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of a cluster is a diagonal matrix. Default is FALSE (full matrix).

use_variance_hyperprior

logical flag indicating whether a hyperprior is added for the variance parameter. Default is TRUE which decrease the impact of the variance prior on the posterior. FALSE is useful for using an informative prior.

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

...

additional arguments to be passed to plot_DPMsn. Only used if doPlot is TRUE.

Value

a object of class DPMclust with the following attributes:

Author(s)

Boris Hejblum

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 https://doi.org/10.1214/18-AOAS1209

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
rm(list=ls())

#Number of data
n <- 1000
set.seed(123)

d <- 2
ncl <- 4

# Sample data

sdev <- array(dim=c(d,d,ncl))

#xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1, 1.5, 1, 1.5, -2, -2, -2))
xi <- matrix(nrow=d, ncol=ncl, c(-0.5, 0, 0.5, 0, 0.5, -1, -1, 1))
##xi <- matrix(nrow=d, ncol=ncl, c(-0.3, 0, 0.5, 0.5, 0.5, -1.2, -1, 1))
psi <- matrix(nrow=d, ncol=4, c(0.4, -0.6, 0.8, 0, 0.3, -0.7, -0.3, -1.2))
p <- c(0.2, 0.1, 0.4, 0.3) # frequence des clusters
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)


c <- rep(0,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*abs(rnorm(1)) + sdev[, , c[k]]%*%matrix(rnorm(d, mean = 0,
                                                                       sd = 1), nrow=d, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}

# Set parameters of G0
hyperG0 <- list()
hyperG0[["b_xi"]] <- rep(0,d)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.0001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d + 1
hyperG0[["lambda"]] <- diag(d)

 # hyperprior on the Scale parameter of DPM
 a <- 0.0001
 b <- 0.0001

 # do some plots
 doPlot <- TRUE
 nbclust_init <- 30



 ## Data
 ########
 library(ggplot2)
 p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
       + geom_point()
       + ggtitle("Simple example in 2d data")
       +xlab("D1")
       +ylab("D2")
       +theme_bw())
 p

 c2plot <- factor(c)
 levels(c2plot) <- c("3", "2", "4", "1")
 pp <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,], "Cluster"=as.character(c2plot)))
       + geom_point(aes(x=X, y=Y, colour=Cluster, fill=Cluster))
       + ggtitle("Slightly overlapping skew-normal simulation\n")
       + xlab("D1")
       + ylab("D2")
       + theme_bw()
       + scale_colour_discrete(guide=guide_legend(override.aes = list(size = 6, shape=22))))
 pp


 ## alpha priors plots
 #####################
 prioralpha <- data.frame("alpha"=rgamma(n=5000, shape=a, scale=1/b),
                         "distribution" =factor(rep("prior",5000),
                         levels=c("prior", "posterior")))
 p <- (ggplot(prioralpha, aes(x=alpha))
       + geom_histogram(aes(y=..density..),
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="red")
       + ggtitle(paste("Prior distribution on alpha: Gamma(", a,
                 ",", b, ")\n", sep=""))
      )
 p


if(interactive()){
 # Gibbs sampler for Dirichlet Process Mixtures
 ##############################################

 MCMCsample_sn <- DPMGibbsSkewN(z, hyperG0, a, b, N=2500,
                                doPlot, nbclust_init, plotevery=200,
                                gg.add=list(theme_bw(),
                                 guides(shape=guide_legend(override.aes = list(fill="grey45")))),
                               diagVar=FALSE)

 s <- summary(MCMCsample_sn, burnin = 2000, thin=10)
 #cluster_est_binder(MCMCsample_sn$mcmc_partitions[1000:1500])
 print(s)
 plot(s)
 #plot_ConvDPM(MCMCsample_sn, from=2)






 # k-means

 plot(x=z[1,], y=z[2,], col=kmeans(t(z), centers=4)$cluster,
      xlab = "d = 1", ylab= "d = 2", main="k-means with K=4 clusters")

 KM <- kmeans(t(z), centers=4)
 KMclust <- factor(KM$cluster)
 levels(KMclust) <- c("2", "4", "1", "3")
 dataKM <- data.frame("X"=z[1,], "Y"=z[2,],
                    "Cluster"=as.character(KMclust))
 dataCenters <- data.frame("X"=KM$centers[,1],
                           "Y"=KM$centers[,2],
                           "Cluster"=c("2", "4", "1", "3"))


 p <- (ggplot(dataKM)
       + geom_point(aes(x=X, y=Y, col=Cluster))
       + geom_point(aes(x=X, y=Y, fill=Cluster, order=Cluster),
                    data=dataCenters, shape=22, size=5)
       + scale_colour_discrete(name="Cluster",
                               guide=guide_legend(override.aes=list(size=6, shape=22)))
       + ggtitle("K-means with K=4 clusters\n")
       + theme_bw()
 )
 p

 postalpha <- data.frame("alpha"=MCMCsample_sn$alpha[501:1000],
                         "distribution" = factor(rep("posterior",1000-500),
                         levels=c("prior", "posterior")))

 postK <- data.frame("K"=sapply(lapply(postalpha$alpha, "["),
                                function(x){sum(x/(x+0:(1000-1)))}))

 p <- (ggplot(postalpha, aes(x=alpha))
       + geom_histogram(aes(y=..density..), binwidth=.1,
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="blue")
       + ggtitle("Posterior distribution of alpha\n")
       # Ignore NA values for mean
       # Overlay with transparent density plot
       + geom_vline(aes(xintercept=mean(alpha, na.rm=T)),
                    color="red", linetype="dashed", size=1)
     )
 p

 p <- (ggplot(postK, aes(x=K))
       + geom_histogram(aes(y=..density..),
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="blue")
       + ggtitle("Posterior distribution of predicted K\n")
       # Ignore NA values for mean
       # Overlay with transparent density plot
       + geom_vline(aes(xintercept=mean(K, na.rm=T)),
                    color="red", linetype="dashed", size=1)
       #+ scale_x_continuous(breaks=c(0:6)*2, minor_breaks=c(0:6)*2+1)
       + scale_x_continuous(breaks=c(1:12))
     )
 p

 p <- (ggplot(drop=FALSE, alpha=.6)
       + geom_density(aes(x=alpha, fill=distribution),
                      color=NA, alpha=.6,
                      data=postalpha)
       + geom_density(aes(x=alpha, fill=distribution),
                      color=NA, alpha=.6,
                      data=prioralpha)
       + ggtitle("Prior and posterior distributions of alpha\n")
       + scale_fill_discrete(drop=FALSE)
       + theme_bw()
       + xlim(0,100)
     )
 p

#Skew Normal
n=100000
xi <- 0
d <- 0.995
alpha <- d/sqrt(1-d^2)
z <- rtruncnorm(n,a=0, b=Inf)
e <- rnorm(n, mean = 0, sd = 1)
x <- d*z + sqrt(1-d^2)*e
o <- 1
y <- xi+o*x
nu=1.3
w <- rgamma(n,scale=nu/2, shape=nu/2)
yy <- xi+o*x/w
snd <- data.frame("Y"=y,"YY"=yy)
p <- (ggplot(snd)+geom_density(aes(x=Y), fill="blue", alpha=.2)
     + theme_bw()
     + ylab("Density")
     + ggtitle("Y~SN(0,1,10)\n")
     + xlim(-1,6)
     + ylim(0,0.8)
     )
p

p <- (ggplot(snd)+geom_density(aes(x=YY), fill="blue", alpha=.2)
     + theme_bw()
     + ylab("Density")
     + ggtitle("Y~ST(0,1,10,1.3)\n")
     + xlim(-2,40)
     + ylim(0,0.8)
     )
p

p <- (ggplot(snd)
     + geom_density(aes(x=Y, fill="blue"), alpha=.2)
     + geom_density(aes(x=YY, fill="red"), alpha=.2)
     + theme_bw()
     +theme(legend.text = element_text(size = 13), legend.position="bottom")
     + ylab("Density")
     + xlim(-2,40)
     + ylim(0,0.8)
     + scale_fill_manual(name="", labels=c("Y~SN(0,1,10)       ", "Y~ST(0,1,10,1.3)"),
     guide="legend", values=c("blue", "red"))
     )
p

#Variations
n=100000
xi <- -1
d <- 0.995
alpha <- d/sqrt(1-d^2)
z <- rtruncnorm(n,a=0, b=Inf)
e <- rnorm(n, mean = 0, sd = 1)
x <- d*z + sqrt(1-d^2)*e
snd <- data.frame("X"=x)
p <- (ggplot(snd)+geom_density(aes(x=X), fill="blue", alpha=.2)
     + theme_bw()
     + ylab("Density")
     + ggtitle("X~SN(10)\n")
     + xlim(-1.5,4)
     + ylim(0,1.6)
     )
p

o <- 0.5
y <- xi+o*x
snd <- data.frame("Y"=y)
p <- (ggplot(snd)+geom_density(aes(x=Y), fill="blue", alpha=.2)
     + theme_bw()
     + ylab("Density")
     + ggtitle("Y~SN(-1,1,10)\n")
     + xlim(-1.5,4)
     + ylim(0,1.6)
     )
p




#Simple toy example
###################

n <- 500
set.seed(12345)


d <- 2
ncl <- 4

# Sample data

sdev <- array(dim=c(d,d,ncl))

xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1, 1.5, 1, 1.5, -2, -2, -2))
psi <- matrix(nrow=d, ncol=4, c(0.4, -0.6, 0.8, 0, 0.3, -0.7, -0.3, -1.2))
p <- c(0.2, 0.1, 0.4, 0.3) # frequence des clusters
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)

#' # Set parameters of G0
hyperG0 <- list()
hyperG0[["b_xi"]] <- rep(0,d)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.0001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d + 1
hyperG0[["lambda"]] <- diag(d)


c <- rep(0,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*abs(rnorm(1)) + sdev[, , c[k]]%*%matrix(rnorm(d, mean = 0,
                                                                        sd = 1), nrow=d, ncol=1)
 cat(k, "/", n, " observations simulated\n", sep="")
}

 MCMCsample_sn_sep <- DPMGibbsSkewN(z, hyperG0, a, b, N=600,
                                    doPlot, nbclust_init, plotevery=100,
                                    gg.add=list(theme_bw(),
                               guides(shape=guide_legend(override.aes = list(fill="grey45")))),
                                    diagVar=TRUE)

 s <- summary(MCMCsample_sn, burnin = 400)

}

NPflow documentation built on Feb. 6, 2020, 5:15 p.m.