defaults | R Documentation |
Given the parameter list and the categorical map this function populates the values of the parameter list accoding to our 'best' known general use case parameters.
defaults(
paramList,
split = "entropy",
dimX = NULL,
weights = NULL,
catLabel = NULL
)
paramList |
A list (possibly empty), to be populated with a set of default values to be passed to a |
split |
The criterion used for splitting the variable. 'gini': gini impurity index (classification, default), 'entropy': information gain (classification) or 'mse': mean square error (regression). |
dimX |
An integer denoting the number of columns in the design matrix X. |
weights |
A vector of length same as |
catLabel |
A category labels of class |
Default parameters of the RotMat* function.
dimX
An integer denoting the number of columns in the design matrix X.
dimProj
Number of variables to be projected, default dimProj="Rand"
: random from 1 to ncol(X).
numProj
the number of projection directions.(default ceiling(sqrt(dimX))
)
catLabel
A category labels of class list
in prediction variables, for details see Examples of ODRF
.
weights
A vector of length same as data
that are positive weights.(default NULL)
lambda
Parameter of the Poisson distribution (default 1).
sparsity
A real number in (0,1)
that specifies the distribution of non-zero elements in the random matrix.
When sparsity
="pois" means that non-zero elements are generated by the p(lambda
) Poisson distribution.
prob
A probability \in (0,1)
used for sampling from.
randDist
Parameter of the Poisson distribution (default 1).
split
The criterion used for splitting the variable. 'gini': gini impurity index (classification, default),
'entropy': information gain (classification) or 'mse': mean square error (regression).
model
Model for projection pursuit. (see PPO
)
RotMatPPO
RotMatRand
RotMatRF
RotMatMake
set.seed(1)
paramList <- list(dimX = 8, numProj = 3, sparsity = 0.25, prob = 0.5)
(paramList <- defaults(paramList, split = "entropy"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.