seeds | R Documentation |
Measurements of geometrical properties of kernels belonging to three different varieties of wheat. A soft X-ray technique and GRAINS package were used to construct all seven, real-valued attributes.
A data frame with 209 rows and 7 covariate variables and 1 response variable.
The variables listed below, from left to right, are:
area A
perimeter P
compactness C = 4piA/P^2
length of kernel
width of kernel
asymmetry coefficient
length of kernel groove
varieties of wheat (1, 2, 3 for Kama, Rosa and Canadian respectively)
https://archive.ics.uci.edu/ml/datasets/seeds
M. Charytanowicz, J. Niewczas, P. Kulczycki, P.A. Kowalski, S. Lukasik, S. Zak, 'A Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images', in: Information Technologies in Biomedicine, Ewa Pietka, Jacek Kawa (eds.), Springer-Verlag, Berlin-Heidelberg, 2010, pp. 15-24.
body_fat
breast_cancer
data(seeds)
set.seed(221212)
train <- sample(1:209, 80)
train_data <- data.frame(seeds[train, ])
test_data <- data.frame(seeds[-train, ])
forest <- ODRF(varieties_of_wheat ~ ., train_data,
split = "gini", parallel = FALSE, ntrees = 50
)
pred <- predict(forest, test_data[, -8])
# classification error
(mean(pred != test_data[, 8]))
tree <- ODT(varieties_of_wheat ~ ., train_data, split = "gini")
pred <- predict(tree, test_data[, -8])
# classification error
(mean(pred != test_data[, 8]))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.