findSa | R Documentation |
This is an implementation of the YHY bootstrap covariance matrix.
findSa(S, fitted, p, a = 0.5, df, n, tau = NULL, tol = 1e-07)
S |
Sample covariance matrix |
fitted |
The fitted covariance matrix |
p |
the number of columns in the covariance matrix |
a |
the starting value for the a parameter |
df |
the degrees of freedom in the model |
n |
the number of participants in the model |
tau |
the population tau. If no tau is provided, the estimated tau from the model will be used |
tol |
the difference between ga and tau at which the function will converge |
a list of the "a" adjusted covariance matrix, Sa, the tau, ga, and the number of interations.
require(Omisc) require(lavaan) set.seed(2^7-1) modelTest<-' LV1=~ .7*x1+.8*x2+.75*x3+.6*x4 LV2=~ .7*y1+.8*y2+.75*y3+.6*y4 LV1~~.3*LV2 LV1~~1*LV1 LV2~~1*LV2 ' modelFit<-' LV1=~ x1+x2+x3+x4 LV2=~ y1+y2+y3+y4 LV1~~start(.5)*LV2 LV1~~1*LV1 LV2~~1*LV2 ' testdata<-simulateData(modelTest, sample.nobs = 250) fit<-cfa(modelFit, testdata) fitted<-fitted(fit)$cov fitted<-fitted[,1:ncol(fitted)] S<-cov(testdata) p<-8 a<-.5 n<-250 df<-21 findSa(S, fitted, p, .5, df, n)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.