OpenMx | R Documentation |
OpenMx is a package for structural equation modeling, matrix algebra optimization and other statistical estimation problems.
Try the example below. We try and have useful help files: for instance help(mxRun
) to learn more. Also the reference manual
OpenMx solves algebra optimization and statistical estimation problems using matrix algebra. Most users use it for Structural equation modeling.
The core function is mxModel
, which makes a model. Models are containers for mxData
, matrices
, mxPath
s
algebras
, mxBounds, confidence intervals
, and mxConstraints
.
Most models require an expectation (see the list below) to calculate the expectations for the model.
Models also need a fit function, several of which are built-in (see below).
OpenMx also allows user-defined fit functions for purposes not covered by the built-in functions. (e.g., mxFitFunctionR
or mxFitFunctionAlgebra
).
Note, for mxModels of type="RAM"
, the expectation and fit-function are set for you automatically.
Running and summarizing a model
Once built, the resulting mxModel can be run (i.e., optimized) using mxRun
. This returns the fitted model.
You can summarize the results of the model using summary
(yourModel)
Additional overview of model making and getting started
The OpenMx manual is online (see references below). However, mxRun
, mxModel
, mxMatrix
all have working examples that will help get you started as well.
The main OpenMx functions are: mxAlgebra
, mxBounds
, mxCI
, mxConstraint
, mxData
,
mxMatrix
, mxModel
, and mxPath
.
Expectation functions include mxExpectationNormal
, mxExpectationRAM
, mxExpectationLISREL
, and mxExpectationStateSpace
;
Fit functions include mxFitFunctionML, mxFitFunctionAlgebra, mxFitFunctionRow and mxFitFunctionR.
Datasets built into OpenMx
OpenMx
comes with over a dozen useful datasets built-in. Discover them using data(package="OpenMx")
, and open them with,
for example, data("jointdata", package ="OpenMx", verbose= TRUE)
Please cite the 'OpenMx' package in any publications that make use of it:
Michael C. Neale, Michael D. Hunter, Joshua N. Pritikin, Mahsa Zahery, Timothy R. Brick Robert M. Kirkpatrick, Ryne Estabrook, Timothy C. Bates, Hermine H. Maes, Steven M. Boker. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81, 535–549. DOI: 10.1007/s11336-014-9435-8
Steven M. Boker, Michael C. Neale, Hermine H. Maes, Michael J. Wilde, Michael Spiegel, Timothy R. Brick, Jeffrey Spies, Ryne Estabrook, Sarah Kenny, Timothy C. Bates, Paras Mehta, and John Fox. (2011) OpenMx: An Open Source Extended Structural Equation Modeling Framework. Psychometrika, 306-317. DOI:10.1007/s11336-010-9200-6
Steven M. Boker, Michael C. Neale, Hermine H. Maes, Michael J. Wilde, Michael Spiegel, Timothy R. Brick, Ryne Estabrook, Timothy C. Bates, Paras Mehta, Timo von Oertzen, Ross J. Gore, Michael D. Hunter, Daniel C. Hackett, Julian Karch, Andreas M. Brandmaier, Joshua N. Pritikin, Mahsa Zahery, Robert M. Kirkpatrick, Yang Wang, and Charles Driver. (2016) OpenMx 2 User Guide. http://openmx.ssri.psu.edu/docs/OpenMx/latest/OpenMxUserGuide.pdf
Maintainer: Robert M. Kirkpatrick robert.kirkpatrick@vcuhealth.org
Authors:
Steven M. Boker
Michael C. Neale
Hermine H. Maes
Michael Spiegel
Timothy R. Brick
Ryne Estabrook
Timothy C. Bates
Ross J. Gore
Michael D. Hunter
Joshua N. Pritikin
Mahsa Zahery
Other contributors:
Michael J. Wilde [contributor]
Paras Mehta [contributor]
Timo von Oertzen [contributor]
Daniel C. Hackett [contributor]
Julian Karch [contributor]
Andreas M. Brandmaier [contributor]
Yang Wang [contributor]
Ben Goodrich goodrich.ben@gmail.com [contributor]
Charles Driver driver@mpib-berlin.mpg.de [contributor]
Massachusetts Institute of Technology [copyright holder]
S. G. Johnson [copyright holder]
Association for Computing Machinery [copyright holder]
Dieter Kraft [copyright holder]
Stefan Wilhelm [copyright holder]
Sarah Medland [copyright holder]
Carl F. Falk [copyright holder]
Matt Keller [copyright holder]
Manjunath B G [copyright holder]
The Regents of the University of California [copyright holder]
Lester Ingber [copyright holder]
Wong Shao Voon [copyright holder]
Juan Palacios [copyright holder]
Jiang Yang [copyright holder]
Gael Guennebaud [copyright holder]
Jitse Niesen [copyright holder]
The OpenMx User's guide can be found at https://openmx.ssri.psu.edu/documentation
Useful links:
Report bugs at http://openmx.ssri.psu.edu/forums
library(OpenMx)
data(demoOneFactor)
# ===============================
# = Make and run a 1-factor CFA =
# ===============================
latents = c("G") # the latent factor
manifests = names(demoOneFactor) # manifest variables to be modeled
# ====================
# = Make the MxModel =
# ====================
m1 <- mxModel("One Factor", type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = latents, to = manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)
)
# ===============================
# = mxRun it and get a summary! =
# ===============================
m1 = mxRun(m1)
summary(m1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.