Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = '#>'
)
## ----setup--------------------------------------------------------------------
library(OutSeekR);
## ----view-data----------------------------------------------------------------
str(outliers, list.len = 5);
outliers[1:6, 1:6];
outliers[495:500, 45:50];
## ----run-1--------------------------------------------------------------------
# Set random seed for reproducibility.
set.seed(371892);
# Set up parallel processing.
future::plan(future::multisession);
outlier.test.run.1 <- detect.outliers(
data = outliers,
num.null = 1e3
);
str(outlier.test.run.1, max.level = 2);
# Restore sequential processing.
future::plan(future::sequential);
## ----examine-p-values---------------------------------------------------------
head(outlier.test.run.1$p.values);
head(outlier.test.run.1$fdr);
## ----transcript-level-outlier-counts------------------------------------------
head(outlier.test.run.1$num.outliers);
## ----table--------------------------------------------------------------------
table(outlier.test.run.1$num.outliers);
## ----view-outlier-test-results-list-------------------------------------------
str(outlier.test.run.1$outlier.test.results.list);
## ----collapse-rounds----------------------------------------------------------
outlier.test.results.combined <- lapply(
X = seq_along(outlier.test.run.1$outlier.test.results.list),
FUN = function(i) {
df <- outlier.test.run.1$outlier.test.results.list[[i]];
df$round <- i;
df <- df[, c(
'round',
colnames(outlier.test.run.1$outlier.test.results.list[[i]])
)];
}
);
outlier.test.results.combined <- do.call(
what = 'rbind',
args = outlier.test.results.combined
);
# Combining the data frames produces duplicates in the row names. R
# will de-duplicate them, but as all the necessary information is
# included in the columns of the data frame (specifically, 'round' and
# 'transcript'), we'll simply discard the row names.
rownames(outlier.test.results.combined) <- NULL;
head(outlier.test.results.combined);
## ----distributions------------------------------------------------------------
head(outlier.test.run.1$distributions);
table(outlier.test.run.1$distributions);
## ----run-2--------------------------------------------------------------------
# Set up parallel processing.
future::plan(future::multisession);
outlier.test.run.2 <- detect.outliers(
data = outliers,
num.null = 1e3,
initial.screen.method = 'fdr',
p.value.threshold = 0.25,
fdr.threshold = 0.05
);
# Restore sequential processing.
future::plan(future::sequential);
str(outlier.test.run.2, max.level = 2);
# Examine p-value and FDR matrices.
head(outlier.test.run.2$p.values);
head(outlier.test.run.2$fdr);
# Check the distribution of number of outliers detected.
table(outlier.test.run.2$num.outliers);
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.