Nothing
PAMA.likediff2R=function(dat,I.new,I.start,phi,smlgamma,nRe){
# This function returns the difference between the log-likelihood when two relevant entities are swapped.
# #' @param dat Data matrix. Each column is a ranking list
# #' @param I.new A ranking list. This is the ranking list after swapping two entities.
# #' @param I.start A ranking list. This is the ranking list before swapping two entities.
# #' @param phi A positive value. It is the common disperse parameter in Mallows model.
# #' @param smlgamma A vector whose length is same as the numnber of rankers. This vector denotes the quality parameters for all the rankers.
# #' @param alpha A value between [0,1]. This denotes the decay of the disperse parameter in the background entities compared to the relevant entities.
# #' @param nRe An integer. This is the number of relevant entities.
# #' @return
# #'
dat.re = dat[I.new>0,]
dat.re=apply(dat.re,2,rank)
mallows.start = sapply(seq_len(ncol(dat.re)), function(i) {-DistancePair(dat.re[,i],I.start[I.start>0])*phi*smlgamma[i]})
mallows.start = sum(mallows.start)
mallows.new = sapply(seq_len(ncol(dat.re)), function(i) {-DistancePair(dat.re[,i],I.new[I.new>0])*phi*smlgamma[i]})
mallows.new = sum(mallows.new)
return(mallows.new - mallows.start)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.