Nothing
#' The 2016 ANES Time Series Study with pre-election interview
#'
#' A subset of 2,188 participants of the 2016 American National Election Time Series Study,
#' which was to track the enduring social trend and record the political moment of 2016 (DeBell, 2018).
#' This study consisted of two surveys with same population. The pre-election interview
#' was during the weeks before the 2016 general election, including 4,271 respondents in
#' total. The post-election interview is the re-interview during the weeks after the
#' election, including 3,649 respondents (662 respondents did not complete post-interviews).
#'
#' The Pre-election preference is recorded as "PreVote" and the "PreVote.num"
#' is the numeric of it. Observations with missing values, or "No thought"
#' responses have been removed. Respondents expressing a voting preference
#' other than Clinton or Trump have been removed.
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @format A data frame with 2188 rows and 10 variables.
#' \itemize{
#' \item \code{age} Respondent's age in years.
#'
#' \item \code{edu.year} Respondent's education year, which is mapped from \code{education}
#' level: \code{MS}=8, \code{HSdrop}=11, \code{HS}=12, \code{Coll}=14,
#' \code{CCdeg}=15, \code{BAdeg}=17, \code{MAdeg}=19.
#'
#' \item \code{education} Respondent's education level.
#'
#' \item \code{income.num} Respondent's family income in thousands: an numerical variable.
#' It is median value of the range of each \code{income} level
#'
#' \item \code{income} Respondent's family income level:
#'
#' '(01) 01. Under $5,000' = 5,
#'
#' '(02) 02. $5,000-$9,999',
#'
#' '(03) 03. $10,000-$12,499',
#'
#' '(04) 04. $12,500-$14,999',
#'
#' '(05) 05. $15,000-$17,499',
#'
#' '(06) 06. $17,500-$19,999',
#'
#' '(07) 07. $20,000-$22,499',
#'
#' '(08) 08. $22,500-$24,999',
#'
#' '(09) 09. $25,000-$27,499',
#'
#' '(10) 10. $27,500-$29,999',
#'
#' '(11) 11. $30,000-$34,999',
#'
#' '(12) 12. $35,000-$39,999',
#'
#' '(13) 13. $40,000-$44,999',
#'
#' '(14) 14. $45,000-$49,999',
#'
#' '(15) 15. $50,000-$54,999',
#'
#' '(16) 16. $55,000-$59,999',
#'
#' '(17) 17. $60,000-$64,999',
#'
#' '(18) 18. $65,000-$69,999',
#'
#' '(19) 19. $70,000-$74,999',
#'
#' '(20) 20. $75,000-$79,999',
#'
#' '(21) 21. $80,000-$89,999',
#'
#' '(22) 22. $90,000-$99,999',
#'
#' '(23) 23. $100,000-$109,999',
#'
#' '(24) 24. $110,000-$124,999',
#'
#' '(25) 25. $125,000-$149,999',
#'
#' '(26) 26. $150,000-$174,999',
#'
#' '(27) 27. $175,000-$249,999',
#'
#' '(28) 28. $250,000 or more' = 250.
#'
#' \item \code{PID} Party identification: a numeric variable with value from 1 to 7
#' representing strong Democrat, \code{strDem} < weak Democrat, \code{weakDem} <
#' independent Democrat, \code{indDem} < independent independent \code{indind} <
#' independent Republican, \code{indRep} < weak Republican, \code{weakRep} <
#' strong Republican, \code{strRep}.
#' \item \code{selfLR} The respondent' self-placement about own left-right in 7 ordinal levels
#' (from extremely liberal to extremely conservative). \code{extLib}: extremely liberal, \code{Lib}: liberal,
#' \code{sliLib}: slightly liberal, \code{Mod}: moderate, \code{sliCon}:
#' slightly conservative, \code{Con}: conservative, \code{extCon}: extremely
#' conservative. \code{extLib} < \code{Lib} < \code{sliLib} <
#' \code{Mod} < \code{sliCon} < \code{Con} < \code{extCon}.
#'
#' \item \code{TrumpLR} The respondent's opinion about Donald Trump's left-right
#' placement (same scale as selfLR).
#'
#' \item \code{ClinLR} The respondent's opinion about Hilary Clinton's left-right
#' placement (same scale as selfLR).
#'
#' \item \code{PreVote} The respondent's voting preference between
#' Donald Trump and Hilary Clinton two months preceeding the
#' November election (Pre-election interview). It is a factor with levels
#' \code{HillaryClinton} and \code{DonaldTrump}.
#'
#' \item \code{PreVote.num} Recode the PreVote to numeric values,
#' 'HillaryClinton'=0, 'DonaldTrump'=1.
#'
#' \item \code{WeightforPreVote} Pre-election weight of a respondent.
#'
#' }
#'
#' @references
#' DeBell, Matthew, Jon A. Krosnick, Katie Gera, David S. Yeager, and Michael P. McDonald.
#' The turnout gap in surveys: Explanations and solutions. \emph{Sociological Methods & Research}, 2018.
#' \doi{10.1177/0049124118769085}
#'
#' Enamorado, T., Fifield, B., & Imai, K. (2018). \emph{User’s guide and codebook for the
#' ANES 2016 time series voter validation supplemental data}. Technical Report, American
#' National Election Studies.
#'
#' @name ANES2016
#'
#' @usage
#' data(ANES2016)
#'
#' @examples
#' head(ANES2016)
NULL
#' Simulated quadratic data
#'
#' Data simulated from a probit model with a quadratic trend. The data are
#' described in Example 2 of Liu and Zhang (2017).
#'
#' @docType data
#'
#' @keywords datasets
#'
#' @format A data frame with 2000 rows and 2 variables.
#' \itemize{
#' \item \code{x} The predictor variable.
#' \item \code{y} The response variable; an ordered factor.
#' }
#'
#' @references
#' Liu, Dungang and Zhang, Heping. Residuals and Diagnostics for Ordinal
#' Regression Models: A Surrogate Approach. \emph{Journal of the American Statistical Association}
#'
#' @name df1
#'
#' @usage
#' data(df1)
#'
#' @examples
#' head(df1)
#' @keywords internal
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.