Description Usage Arguments Value Note References Examples
Simulate surrogate response values for cumulative link regression models using the latent method described in Liu and Zhang (2017).
1 2 3 4 5 6 7 |
object |
An object of class |
method |
Character string specifying which method to use to generate the
surrogate response values. Current options are |
jitter.uniform.scale |
Character string specifying the scale on which to perform
the jittering whenever |
nsim |
Integer specifying the number of bootstrap replicates to use.
Default is |
... |
Additional optional arguments. (Currently ignored.) |
A numeric vector of class c("numeric", "surrogate")
containing
the simulated surrogate response values. Additionally, if nsim
> 1,
then the result will contain the attributes:
boot_reps
A matrix with nsim
columns, one for each
bootstrap replicate of the surrogate values. Note, these are random and do
not correspond to the original ordering of the data;
boot_id
A matrix with nsim
columns. Each column
contains the observation number each surrogate value corresponds to in
boot_reps
. (This is used for plotting purposes.)
Surrogate response values require sampling from a continuous distribution;
consequently, the result will be different with every call to
surrogate
. The internal functions used for sampling from truncated
distributions are based on modified versions of
truncdist:rtrunc
and truncdist:qtrunc
.
For "glm"
objects, only the binomial()
family is supported.
Liu, D., Li, S., Yu, Y., & Moustaki, I. (2020). Assessing partial association between ordinal variables: quantification, visualization, and hypothesis testing. Journal of the American Statistical Association, 1-14. doi: 10.1080/01621459.2020.1796394
Liu, D., & Zhang, H. (2018). Residuals and diagnostics for ordinal regression models: A surrogate approach. Journal of the American Statistical Association, 113(522), 845-854. doi: 10.1080/01621459.2017.1292915
Nadarajah, S., & Kotz, S. (2006). R Programs for Truncated Distributions. Journal of Statistical Software, 16(Code Snippet 2), 1 - 8. doi: 10.18637/jss.v016.c02
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # Generate data from a quadratic probit model
set.seed(101)
n <- 2000
x <- runif(n, min = -3, max = 6)
z <- 10 + 3*x - 1*x^2 + rnorm(n)
y <- ifelse(z <= 0, yes = 0, no = 1)
# Scatterplot matrix
pairs(~ x + y + z)
# Setup for side-by-side plots
par(mfrow = c(1, 2))
# Misspecified mean structure
fm1 <- glm(y ~ x, family = binomial(link = "probit"))
s1 <- surrogate(fm1)
scatter.smooth(x, s1 - fm1$linear.predictors,
main = "Misspecified model",
ylab = "Surrogate residual",
lpars = list(lwd = 3, col = "red2"))
abline(h = 0, lty = 2, col = "blue2")
# Correctly specified mean structure
fm2 <- glm(y ~ x + I(x ^ 2), family = binomial(link = "probit"))
s2 <- surrogate(fm2)
scatter.smooth(x, s2 - fm2$linear.predictors,
main = "Correctly specified model",
ylab = "Surrogate residual",
lpars = list(lwd = 3, col = "red2"))
abline(h = 0, lty = 2, col = "blue2")
dev.off() # reset to defaults once finish
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.