PFIM-package | R Documentation |
Evaluate or optimize designs for nonlinear mixed effects models using the Fisher Information matrix. Methods used in the package refer to Mentré F, Mallet A, Baccar D (1997) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/biomet/84.2.429")}, Retout S, Comets E, Samson A, Mentré F (2007) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/sim.2910")}, Bazzoli C, Retout S, Mentré F (2009) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/sim.3573")}, Le Nagard H, Chao L, Tenaillon O (2011) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1186/1471-2148-11-326")}, Combes FP, Retout S, Frey N, Mentré F (2013) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11095-013-1079-3")} and Seurat J, Tang Y, Mentré F, Nguyen TT (2021) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.cmpb.2021.106126")}.
Nonlinear mixed effects models (NLMEM) are widely used in model-based drug development and use to analyze longitudinal data. The use of the "population" Fisher Information Matrix (FIM) is a good alternative to clinical trial simulation to optimize the design of these studies. The present version, PFIM 6.1, is an R package that uses the S4 object system for evaluating and/or optimizing population designs based on FIM in NLMEMs.
This version of PFIM now includes a library of models implemented also using the object oriented system S4 of R. This library contains two libraries of pharmacokinetic (PK) and/or pharmacodynamic (PD) models. The PK library includes model with different administration routes (bolus, infusion, first-order absorption), different number of compartments (from 1 to 3), and different types of eliminations (linear or Michaelis-Menten). The PD model library, contains direct immediate models (e.g. Emax and Imax) with various baseline models, and turnover response models. The PK/PD models are obtained with combination of the models from the PK and PD model libraries. PFIM handles both analytical and ODE models and offers the possibility to the user to define his/her own model(s). In PFIM 6.1, the FIM is evaluated by first order linearization of the model assuming a block diagonal FIM as in [3]. The Bayesian FIM is also available to give shrinkage predictions [4]. PFIM 6.1 includes several algorithms to conduct design optimization based on the D-criterion, given design constraints : the simplex algorithm (Nelder-Mead) [5], the multiplicative algorithm [6], the Fedorov-Wynn algorithm [7], PSO (Particle Swarm Optimization) and PGBO (Population Genetics Based Optimizer) [9].
Documentation and user guide are available at http://www.pfim.biostat.fr/
PFIM 6.1 also provides quality control with tests and validation using the evaluated FIM to assess the validity of the new version and its new features. Finally, PFIM 6.1 displays all the results with both clear graphical form and a data summary, while ensuring their easy manipulation in R. The standard data visualization package ggplot2 for R is used to display all the results with clear graphical form [10]. A quality control using the D-criterion is also provided.
/R
folderPFIM 6.1 contains a hierarchy of S4 classes with corresponding methods and functions serving as constructors.
All of the source code related to the specification of a certain class is contained in a file named [Name_of_the_class]-Class.R
.
These classes include:
1. all roxygen @include
to insure the correctly generated collate for the DESCRIPTION file,
2. \setClass
preceded by a roxygen documentation that describes the purpose and slots of the class,
3. specification of an initialize method,
4. all getter and setter, respectively returning attributes of the object and associated objects.
/R
folderClass Administration
getOutcome
setOutcome
getTimeDose
setTimeDose
getDose
setDose
getTinf
setTinf
getTau
setTau
Class AdministrationConstraints
getOutcome
getDose
Class Arm
getName
setName
getSize
setSize
getAdministrations
setAdministrations
getSamplingTimes
setSamplingTimes
getInitialConditions
setInitialConditions
getAdministrationsConstraints
getSamplingTimesConstraints
getSamplingTime
getSamplingTimeConstraint
setSamplingTimesConstraints
setSamplingTime
getAdministration
getAdministrationConstraint
EvaluateArm
Class BayesianFim
EvaluateFisherMatrix
getRSE
getConditionNumberVarianceEffects
getShrinkage
setShrinkage
reportTablesFIM
generateReportEvaluation
Class Combined1
See class ModelError
Class Constant
See class ModelError
Class Design
getName
setName
getSize
setSize
setArms
getOutcomesEvaluation
setOutcomesEvaluation
getOutcomesGradient
setOutcomesGradient
getFim
setFim
getNumberOfArms
setNumberOfArms
setArm
EvaluateDesign
plotOutcomesEvaluation
plotOutcomesGradient
reportTablesAdministration
reportTablesDesign
Class Distribution
getParameters
setParameters
getMu
setMu
getOmega
setOmega
getAdjustedGradient
Class Evaluation
run
reportTablesPlot
generateTables
Report
Class FedorovWynnAlgorithm
FedorovWynnAlgorithm_Rcpp
resizeFisherMatrix
setParameters
optimize
generateReportOptimization
Class FedorovWynnAlgorithm
FedorovWynnAlgorithm_Rcpp
resizeFisherMatrix
setParameters
optimize
generateReportOptimization
Class Fim
EvaluateFisherMatrix
EvaluateVarianceFIM
getFisherMatrix
setFisherMatrix
getFixedEffects
setFixedEffects
getVarianceEffects
setVarianceEffects
getDeterminant
getDcriterion
getCorrelationMatrix
getSE
getRSE
getShrinkage
getEigenValues
getConditionNumberFixedEffects
getConditionNumberVarianceEffects
getColumnAndParametersNamesFIM
getColumnAndParametersNamesFIMInLatex
reportTablesFIM
generateReportEvaluation
setFimTypeToString
Class GenericMethods
getName
getNames
getSize
setSize
getOutcome
setOutcome
getFim
getOdeSolverParameters
getMu
setMu
getOmega
setOmega
getParameters
setParameters
getModelError
getSamplings
getFim
setName
setArms
getArms
Class IndividualFim
EvaluateFisherMatrix
EvaluateVarianceFIM
getRSE
getShrinkage
setShrinkage
reportTablesFIM
generateReportEvaluation
Class LibraryOfModels
getName
getContent
setContent
addModel
addModels
getLibraryPKModels
getLibraryPDModels
Class LibraryOfPKPDModels
getPKModel
getPDModel
getPKPDModel
Class LogNormal
getAdjustedGradient
Class Model
getName
setName
getDescription
setDescription
getEquations
setEquations
setModelFromLibrary
getOutcomes
setOutcomes
getOutcomesForEvaluation
setOutcomesForEvaluation
getParameters
setParameters
getModelError
setModelError
getInitialConditions
setInitialConditions
getOdeSolverParameters
setOdeSolverParameters
getModelFromLibrary
convertPKModelAnalyticToPKModelODE
getNumberOfParameters
isModelODE
isModelAnalytic
isDoseInEquations
isModelInfusion
isModelSteadyState
isModelBolus
definePKPDModel
definePKModel
defineModel
defineModelFromLibraryOfModels
defineModelUserDefined
defineModelType
EvaluateModel
parametersForComputingGradient
EvaluateVarianceModel
getFixedParameters
getModelErrorParametersValues
reportTablesModelParameters
reportTablesModelError
Class ModelAnalytic
EvaluateModel
definePKModel
definePKPDModel
convertPKModelAnalyticToPKModelODE
Class ModelAnalyticBolus
See class ModelAnalytic
Class ModelAnalyticBolusSteadyState
See class ModelAnalyticBolus
Class ModelBolus
See class Model
Class ModelError
getOutcome
getEquation
setEquation
getDerivatives
setDerivatives
getSigmaInter
setSigmaInter
getSigmaSlope
setSigmaSlope
getcError
setcError
getParameters
EvaluateErrorModelDerivatives
Class ModelInfusion
getEquationsDuringInfusion
getEquationsAfterInfusion
setEquationsAfterInfusion
setEquationsDuringInfusion
Class ModelODE
See class Model
Class ModelODEBolus
EvaluateModel
definePKPDModel
Class ModelODEDoseInEquations
EvaluateModel
definePKModel
definePKPDModel
Class ModelODEDoseNotInEquations
EvaluateModel
definePKModel
definePKPDModel
Class ModelODEInfusion
See class ModelInfusion
Class ModelODEInfusionDoseInEquations
EvaluateModel
definePKModel
definePKPDModel
Class ModelParameter
getName
getDistribution
setDistribution
getFixedMu
setFixedMu
getFixedOmega
setFixedOmega
getMu
setMu
getOmega
setOmega
Class MultiplicativeAlgorithm
MultiplicativeAlgorithm_Rcpp
getLambda
getDelta
getNumberOfIterations
getOptimalWeights
setOptimalWeights
setParameters
optimize
getDataFrameResults
plotWeights
getWeightThreshold
generateReportOptimization
Class Normal
getAdjustedGradient
Class Optimization
getProportionsOfSubjects
getOptimizationResults
setOptimizationResults
getEvaluationFIMResults
setEvaluationFIMResults
setEvaluationInitialDesignResults
getEvaluationInitialDesignResults
getElementaryProtocols
generateFimsFromConstraints
run
plotWeights
Report
Class PFIMProject
getName
setModel
getModel
getModelEquations
getModelParameters
getModelError
getDesigns
getFim
getOdeSolverParameters
getOutcomes
getOptimizer
getOptimizerParameters
run
generateTables
Report
Class PGBOAlgorithm
setParameters
optimize
generateReportOptimization
Class PlotEvaluation
plot
plotSE
plotRSE
plotShrinkage
Class PopulationFim
EvaluateFisherMatrix
EvaluateVarianceFIM
getRSE
getShrinkage
setShrinkage
reportTablesFIM
computeVMat
generateReportEvaluation
Class Proportional
See class ModelError
Class PSOAlgorithm
setParameters
optimize
generateReportOptimization
Class SamplingTimeConstraints
getOutcome
getSamplings
getFixedTimes
getNumberOfTimesByWindows
getMinSampling
getSamplingsWindows
getNumberOfsamplingsOptimisable
checkSamplingTimeConstraintsForContinuousOptimization
generateSamplingsFromSamplingConstraints
Class SamplingTimes
getOutcome
setOutcome
getSamplings
setSamplings
Class SimplexAlgorithm
setParameters
fun.amoeba
fisher.simplex
optimize
generateReportOptimization
Maintainer: Romain Leroux romain.leroux@inserm.fr
Authors:
France Mentré france.mentre@inserm.fr
Jérémy Seurat jeremy.seurat@inserm.fr
Lucie Fayette lucie.fayette@inserm.fr
[1] Dumont C, Lestini G, Le Nagard H, Mentré F, Comets E, Nguyen TT, et al. PFIM 4.0, an extended R program for design evaluation and optimization in nonlinear mixed-effect models. Comput Methods Programs Biomed. 2018;156:217-29.
[2] Chambers JM. Object-Oriented Programming, Functional Programming and R. Stat Sci. 2014;29:167-80.
[3] Mentré F, Mallet A, Baccar D. Optimal Design in Random-Effects Regression Models. Biometrika. 1997;84:429-42.
[4] Combes FP, Retout S, Frey N, Mentré F. Prediction of shrinkage of individual parameters using the Bayesian information matrix in nonlinear mixed effect models with evaluation in pharmacokinetics. Pharm Res. 2013;30:2355-67.
[5] Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308-13.
[6] Seurat J, Tang Y, Mentré F, Nguyen, TT. Finding optimal design in nonlinear mixed effect models using multiplicative algorithms. Computer Methods and Programs in Biomedicine, 2021.
[7] Fedorov VV. Theory of Optimal Experiments. Academic Press, New York, 1972.
[8] Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. Proc. of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, 4-6 October 1995, 39-43.
[9] Le Nagard H, Chao L, Tenaillon O. The emergence of complexity and restricted pleiotropy in adapting networks. BMC Evol Biol. 2011;11:326.
[10] Wickham H. ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, 2016.
Useful links:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.