Description Usage Arguments Details Value Author(s)
Calls one of the 16 functions to fit the correspoinding model.
1 2 3 4 5 6 7 8 9 10 11 12 13 | PICBayes(L, ...)
## Default S3 method:
PICBayes(L,R,y,xcov,IC,model,scale.designX,scaled,xtrt,zcov,
area,binary,I,C,nn,order=3,knots,grids,a_eta=1,b_eta=1,a_ga=1,b_ga=1,a_lamb=1,
b_lamb=1,a_tau=1,b_tau=1,a_tau_trt=1,b_tau_trt=1,a_alpha=1,b_alpha=1,H=5,
a_tau_star=1,b_tau_star=1,a_alpha_trt=1,b_alpha_trt=1,H_trt=5,
a_tau_trt_star=1,b_tau_trt_star=1,beta_iter=1001,phi_iter=1001,
beta_cand,phi_cand,beta_sig0=10,x_user=NULL,
total=6000,burnin=1000,thin=1,conf.int=0.95,seed=1,...)
## S3 method for class 'formula'
PICBayes(formula, data, ...)
|
L |
The vector of left endpoints of the observed time intervals. |
R |
The vector of right endponts of the observed time intervals. |
y |
The vector of censoring indicator: 0=left-censored, 1=interval-censored, 2=right-censored, 3=exact. |
xcov |
The covariate matrix for the p predictors. |
IC |
The vector of general interval-censored indicator: 1=general interval-censored, 0=exact. |
model |
A character string specifying the type of model. See details. |
scale.designX |
The TRUE or FALSE indicator of whether or not to scale the design matrix X. |
scaled |
The vector indicating whether each covariate is to be scaled: 1=to be scaled, 0=not. |
xtrt |
The covariate that has a random effect. |
zcov |
The design matrix for the q random effects. |
area |
The vector of cluster ID. |
I |
The number of areas. |
C |
The adjacency matrix. |
nn |
The vector of number of neighbors for each area. |
binary |
The vector indicating whether each covariate is binary. |
order |
The degree of basis I-splines: 1=linear, 2=quadratic, 3=cubic, etc. |
knots |
A sequence of knots to define the basis I-splines. |
grids |
A sequence of points at which baseline survival function is to be estimated. |
a_eta |
The shape parameter of Gamma prior for |
b_eta |
The rate parameter of Gamma prior for |
a_ga |
The shape parameter of Gamma prior for |
b_ga |
The rate parameter of Gamma prior for |
a_lamb |
The shape parameter of Gamma prior for spatial precision |
b_lamb |
The rate parameter of Gamma prior for spatial precision |
a_tau |
The shape parameter of Gamma prior for random intercept precision |
b_tau |
The rate parameter of Gamma prior for random intercept precision |
a_tau_trt |
The shape parameter of Gamma prior for random treatment precision |
b_tau_trt |
The rate parameter of Gamma prior for random treatment precision |
a_alpha |
The shape parameter of Gamma prior for |
b_alpha |
The rate parameter of Gamma prior for |
H |
The number of distinct components in DP mixture prior under blocked Gibbs sampler. |
a_tau_star |
The shape parameter of |
b_tau_star |
The rate parameter of |
a_alpha_trt |
The shape parameter of Gamma prior for |
b_alpha_trt |
The rate parameter of Gamma prior for |
H_trt |
The number of distinct components in DP mixture prior under blocked Gibbs sampler for random treatment. |
a_tau_trt_star |
The shape parameter of |
b_tau_trt_star |
The rate parameter of |
beta_iter |
The number of initial iterations in the Metropolis-Hastings sampling for |
phi_iter |
The number of initial iterations in the Metropolis-Hastings sampling for |
beta_cand |
The sd of the proposal normal distribution in the MH sampling for |
phi_cand |
The sd of the proposal normal distribution in the initial MH sampling for |
beta_sig0 |
The sd of the prior normal distribution for |
x_user |
The user-specified covariate vector at which to estimate survival function(s). |
total |
The number of total iterations. |
burnin |
The number of burnin. |
thin |
The frequency of thinning. |
conf.int |
The confidence level of the CI for |
seed |
A user-specified random seed. |
formula |
A formula expression with the response returned by the Surv function in the survival package. |
data |
A data frame that contains the variables named in the formula argument. |
... |
Other arguments if any. |
Possible values are "PIC", "spatialPIC", "clusterPIC_int", "clusterPIC_int_DP", "clusterPIC_trt", "clusterPIC_trt_DP", "clusterPIC_Z", and "clusterPIC_Z_DP" for partly interval-censored data; and "IC", "spatialIC", "clusterIC_int", "clusterIC_int_DP", "clusterIC_trt", "clusterIC_trt_DP", "clusterIC_Z", and "clusterIC_Z_DP" for general interval-censored data.
An object of class PICBayes. Refere to each specific function for its specific values.
Chun Pan
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.