Nothing
#'
#' @title Coefficients for PSGD Object
#'
#' @description \code{coef.PSGD} returns the coefficients for a PSGD object.
#'
#' @method coef PSGD
#'
#' @param object An object of class PSGD.
#' @param group_index Groups included in the ensemble. Default setting includes all the groups.
#' @param ... Additional arguments for compatibility.
#'
#' @return The coefficients for the PSGD object.
#'
#' @export
#'
#' @author Anthony-Alexander Christidis, \email{anthony.christidis@stat.ubc.ca}
#'
#' @seealso \code{\link{PSGD}}
#'
#' @examples
#' # Required Libraries
#' library(mvnfast)
#'
#' # Setting the parameters
#' p <- 100
#' n <- 40
#' n.test <- 1000
#' sparsity <- 0.2
#' rho <- 0.5
#' SNR <- 3
#'
#' # Generating the coefficient
#' p.active <- floor(p*sparsity)
#' a <- 4*log(n)/sqrt(n)
#' neg.prob <- 0.2
#' nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
#'
#' # Correlation structure
#' Sigma <- matrix(0, p, p)
#' Sigma[1:p.active, 1:p.active] <- rho
#' diag(Sigma) <- 1
#' true.beta <- c(nonzero.betas, rep(0 , p - p.active))
#'
#' # Computing the noise parameter for target SNR
#' sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma %*% true.beta)/SNR))
#'
#' # Simulate some data
#' set.seed(1)
#' x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma)
#' y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
#' x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma)
#' y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
#'
#' # PSGD Ensemble
#' output <- PSGD(x = x.train, y = y.train, n_models = 5,
#' model_type = c("Linear", "Logistic")[1], include_intercept = TRUE,
#' split = 3, size = 10,
#' max_iter = 20,
#' cycling_iter = 0)
#' psgd.coef <- coef(output, group_index = 1:output$n_models)
#' psgd.predictions <- predict(output, newx = x.test, group_index = 1:output$n_models)
#' mean((y.test - psgd.predictions)^2)/sigma.epsilon^2
#'
coef.PSGD <- function(object, group_index = NULL, ...){
if(is.null(group_index)){
final_coef <- numeric(nrow(object$betas) + 1)
for(model.ind in 1:object$n_models)
final_coef <- final_coef + c(object$intercepts[model.ind], object$betas[,model.ind])/object$n_models
return(final_coef)
} else{
if(any(!(group_index %in% 1:object$n_models)))
stop("The group index is invalid.")
final_coef <- numeric(nrow(object$betas) + 1)
for(model.ind in group_index)
final_coef <- final_coef + c(object$intercepts[model.ind], object$betas[,model.ind])/length(group_index)
return(final_coef)
}
}
#'
#' @title Coefficients for cv.PSGD Object
#'
#' @description \code{coef.cv.PSGD} returns the coefficients for a cv.PSGD object.
#'
#' @method coef cv.PSGD
#'
#' @param object An object of class cv.PSGD
#' @param group_index Groups included in the ensemble. Default setting includes all the groups.
#' @param ... Additional arguments for compatibility.
#'
#' @return The coefficients for the cv.PSGD object.
#'
#' @export
#'
#' @author Anthony-Alexander Christidis, \email{anthony.christidis@stat.ubc.ca}
#'
#' @seealso \code{\link{cv.PSGD}}
#'
#' @examples
#' # Required Libraries
#' library(mvnfast)
#'
#' # Setting the parameters
#' p <- 100
#' n <- 40
#' n.test <- 1000
#' sparsity <- 0.2
#' rho <- 0.5
#' SNR <- 3
#'
#' # Generating the coefficient
#' p.active <- floor(p*sparsity)
#' a <- 4*log(n)/sqrt(n)
#' neg.prob <- 0.2
#' nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
#'
#' # Correlation structure
#' Sigma <- matrix(0, p, p)
#' Sigma[1:p.active, 1:p.active] <- rho
#' diag(Sigma) <- 1
#' true.beta <- c(nonzero.betas, rep(0 , p - p.active))
#'
#' # Computing the noise parameter for target SNR
#' sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma %*% true.beta)/SNR))
#'
#' # Simulate some data
#' set.seed(1)
#' x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma)
#' y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
#' x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma)
#' y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
#'
#' # CV PSGD Ensemble
#' output <- cv.PSGD(x = x.train, y = y.train, n_models = 5,
#' model_type = c("Linear", "Logistic")[1], include_intercept = TRUE,
#' split_grid = c(2, 3), size_grid = c(10, 15),
#' max_iter = 20,
#' cycling_iter = 0,
#' n_folds = 5,
#' n_threads = 1)
#' psgd.coef <- coef(output, group_index = 1:output$n_models)
#' psgd.predictions <- predict(output, newx = x.test, group_index = 1:output$n_models)
#' mean((y.test - psgd.predictions)^2)/sigma.epsilon^2
#'
coef.cv.PSGD <- function(object, group_index = NULL, ...){
if(is.null(group_index)){
final_coef <- numeric(nrow(object$betas) + 1)
for(model.ind in 1:object$n_models)
final_coef <- final_coef + c(object$intercepts[model.ind], object$betas[,model.ind])/object$n_models
return(final_coef)
} else{
if(any(!(group_index %in% 1:object$n_models)))
stop("The group index is invalid.")
final_coef <- numeric(nrow(object$betas) + 1)
for(model.ind in group_index)
final_coef <- final_coef + c(object$intercepts[model.ind], object$betas[,model.ind])/length(group_index)
return(final_coef)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.